Dirk Bornhöft, Jürgen Meyerhoff

Umwelt-/ Sozio-Ökonomie im Forschungsprogramm Elbe-Ökologie

Dokumentation des Fachgesprächs

Dirk Bornhöft, Jürgen Meyerhoff (Hg.)

Umwelt-/ Sozio-Ökonomie im Forschungsprogramm Elbe-Ökologie

Dokumentation des Fachgesprächs

Schriftenreihe des IÖW 126/97

Gefördert durch das Bundesministerium für Bildung, Wissenschaft,
Forschung und Technologie im Rahmen der
"Ökologischen Forschung in der Stromlandschaft Elbe (Elbe-Ökologie)"

Berlin 1997 ISBN 3-932092-25-2

Vorwort

Im Mittelpunkt des Förderschwerpunktes "Ökologische Konzeptionen für Fluß- und Seenlandschaften" des Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie (BMBF) steht seit 1994 die Stromlandschaft der Elbe. Auf Basis der im August 1995 veröffentlichten Forschungskonzeption "Elbe-Ökologie" werden interdisziplinäre Verbundvorhaben zur Ökologie der Fließgewässer und Auen sowie zur Landnutzung im Einzugsgebiet gefördert. Durch Aufklärung ökologischer Zusammenhänge und Erarbeitung umwelt-, sozialund wirtschaftsverträglicher Konzepte soll ein Beitrag für eine dauerhaft-umweltgerechte Entwicklung geleistet werden.

Eine wesentliche Zielstellung dieses fachübergreifenden Forschungsprogramms ist es, der Praxis konkrete Entscheidungsgrundlagen für die zukünftige Entwicklung der Elbelandschaft bereitzustellen. Die Integration sozio-ökonomischer Untersuchungen in ökologische Forschungsprogramme, wie z.B. in das der Elbe, ist eine Voraussetzung zur Gewährleistung der Praxisrelevanz der Ergebnisse.

Ziel des gemeinsam mit Professor Hampicke von der Universität Greifswald - bei dem wir uns an dieser Stelle besonders bedanken möchten - initiierten Fachgespräches war es, auf der Basis vorliegender umwelt- und sozio-ökonomischer Untersuchungen geeignete Ansätze für die Fragestellungen im Elbe-Ökologie-Programm herauszuarbeiten, wesentliche Forschungsdefizite aufzuzeigen und die weitere Vorgehensweise abzustimmen.

Mit dieser Dokumentation hoffen wir zum einen, den Stand des Wissens für die sozioökonomischen Teilprojekte zusammengefaßt zu haben, zum anderen, den Inhalt dieses Fachgesprächs einem größeren Interessentenkreis zugänglich zu machen. Schließlich soll sie für ein weiterführendes Fachgespräch eine Grundlage darstellen, auf dem die Ergebnisse der Teilprojekte vorgestellt und diskutiert werden sollen.

Bedanken möchten wir uns nicht zuletzt bei allen Autoren. Ohne ihre Bereitschaft, die Beiträge nachträglich schriftlich abzufassen, wäre diese Dokumentation nicht möglich gewesen. Der DVWK danken wir für die Genehmigung des Nachdrucks zweier Kapitel aus der Publikation "Fluß und Landschaft – Ökologische Entwicklungskonzepte", die hoffentlich nicht nur aus unserer Sicht eine Abrundung der Dokumentation darstellen.

Berlin, im November 1997

Dirk Bornhöft, Jürgen Meyerhoff

Inhait

Einleitung und Ziele des Fachgesprächs "Umwelt-/ Sozio-Ökonomie im Forschungsprogramm Elbe-Ökologie"	1
Dirk Bornhöft	
Möglichkeiten und Grenzen der Monetarisierung der Natur Ulrich Hampicke	9
Die Contingent Valuation Method: Stand der Forschung, Anwendungs-	
möglichkeiten im Rahmen der (Elbe-) Ökologie und Grenzen der Methodik Peter Elsasser	22
Monetäre Biotopwerte als Instrument der Projektbewertung Burkhard Schweppe-Kraft	33
Die Berücksichtigung von Umweltwirkungen im Rahmen gesamtwirtschaftlicher	55
Bewertungsrechnungen für verkehrliche Investitionsvorhaben an	
Binnenwasserstraßen	
Peter Rieken	
Ökonomische Bewertung von Feuchtgebieten Jürgen Meyerhoff	60
Kosten und Nutzen eines Nationalparks Donauauen Michael Kosz	70
Bodennutzungszertifikate als Instrumente im Grundwasserschutz? Markus F. Hofreither	83
Betriebsoptimierungsmodell zur ökonomischen Beurteilung	95
umweltgerechter, nachhaltiger Landnutzung Karl Jaster	
Effiziente und umweltverträgliche Landnutzung. Ein Konzept für eine	104
marktwirtschaftlich organisierte Landbewirtschaftung Gerd Breitschuh, Hans Eckert	
Kosten-Nutzen-Analyse zur Revitalisierung der mittleren und unteren Unstrut Klaus Tampe	113
Die sozioökonomische Betroffenheit der Landwirtschaft unter	118
Berücksichtigung betrieblicher Anpassungsmöglichkeiten Gert Neubert, Peter Zube	
Fluß und Landschaft - Ökologische Entwicklungskonzepte	123
- Akzeptanz und Umsetzbarkeit	
- Kostenermittlung und Bewertung	
Programm des Fachgesprächs	136
Überblickskarte bewilligte Forschungsvorhaben im Forschungsprogramm "Ökologische Forschung in der Stromlandschaft Elbe (Elbe-Ökologie)"	138
Autorenverzeichnis	139

Dirk Bornhöft

Einleitung und Ziele des Fachgesprächs "Umwelt-/ Sozio-Ökonomie im Forschungsprogramm Elbe-Ökologie"

Mit seinem Förderschwerpunkt "Ökologische Konzeptionen für Fluß- und Seenlandschaften" verfolgt das Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) das übergreifende Ziel, Entscheidungsgrundlagen für die Praxis zu schaffen. Dazu ist es notwendig,

- den Erkenntnisstand über das natürliche Funktionieren von Ökosystemen zu verbessern,
- umwelt-, wirtschafts- und sozialverträgliche Gestaltungsstrategien aufzuzeigen und
- Managementkonzepte für eine dauerhaft-umweltgerechte, nachhaltige Entwicklung zu erarbeiten.

Auf der Basis dieser übergeordneten Ziele werden vom BMBF seit Juli 1996 anwendungsorientierte Forschungsvorhaben beispielhaft in der Stromlandschaft Elbe gefördert. Die Bundesanstalt für Gewässerkunde (BfG) wurde mit dem Aufbau der organisatorischen und inhaltlichen Struktur der ökologischen Forschung an der Elbe betraut, daher wurde im Mai
1994 die "Projektgruppe Elbe-Ökologie" mit Sitz in der Außenstelle der BfG in Berlin aufgebaut.

Die vordringliche Aufgabe der Projektgruppe in der 1. Phase (01. Mai 1994 – 31 Dezember 1995) war die Erarbeitung eines zwischen Wissenschaft und Praxis abgestimmten, umsetzungsorientierten Forschungsprogramms, dessen Zielsetzungen, Inhalte und Verfahrensweisen in einer Forschungskonzeption darzustellen waren. Hauptaufgaben der Projektgruppe in der 2. Projektphase (seit 01. Januar 1996) sind die fachliche Koordination der Forschungsverbünde, die Zusammenführung, Aufbereitung und Weiterleitung von Forschungsergebnissen, die Sicherstellung des Informationsflusses der Verbundvorhaben untereinander und zur umsetzenden Praxis, die Fortschreibung der Forschungskonzeption und die Information der Öffentlichkeit.

Zur Ermittlung und Abstimmung des anwendungsorientierten Forschungsprogramms hat die Projektgruppe zahlreiche Fachgespräche mit Experten aus Wissenschaft und Praxis geführt mit dem Ziel, die elbeanrainenden Länder, die fachlich zuständigen Bundes- und Landesbehörden, die länderübergreifenden Einrichtungen, wie z.B. die Internationale Kommission zum Schutz der Elbe (IKSE), Großforschungseinrichtungen, wissenschaftliche Institute und Universitäten an der Konzepterstellung zu beteiligen.

Um prioritäre Forschungsaufgaben in den Bereichen "Fließgewässer", "Auen" und "Einzugsgebiet" zu konkretisieren und abzustimmen, hat die Projektgruppe sogenannte Fachgruppentagungen zu folgenden Themen durchgeführt: "Auen-Ökologie", "Strategien und Leitlinien für ein Rahmenkonzept", "Fisch-Ökologie", "Landnutzung/-bewirtschaftung im Einzugsgebiet", "Ökomorphologie der Fließgewässer" sowie "Strukturgebundener Stoffumsatz

in großen Fließgewässern". Auf den Tagungen wurden sowohl aus der Sicht der Länder als auch aus fachwissenschaftlicher Sicht eine große Zahl von Problemfeldern diskutiert.

Als Synopse der Fachgruppentagungen und der Gespräche mit Experten aus Wissenschaft und Praxis wurde die Forschungskonzeption "Ökologische Forschung in der Stromlandschaft Elbe (Elbe-Ökologie)" erarbeitet und die entsprechende Forschungsförderung mit einem Fördervolumen von ca. 30 Mio. DM bis zum Jahr 2000 im Bundesanzeiger bekannt gemacht. Als Ergebnis der Bekanntmachung der Forschungskonzeption sind ca. 200 Projektskizzen beim Projektträger Biologie, Energie, Ökologie (PT BEO) des BMBF eingegangen.

Im Rahmenkonzept der Forschungskonzeption werden die Schwerpunkte der "Ökologischen Forschung in der Stromlandschaft Elbe" zusammenfassend erläutert und die übergeordneten Strategien und Instrumente zur ökologischen Forschung und Entwicklung dargestellt:

- Durchführung einer naturwissenschaftlichen Zustandsanalyse und -bewertung,
- Entwicklung ökologischer Leitbilder als langfristige Zielvorgaben einer dauerhaftumweltgerechten, nachhaltigen Entwicklung (Sustainable Development),
- Ermittlungen zur ökologischen Belastbarkeit unterschiedlicher Landschaftsteilbereiche (Tragekapazität verschiedener Ökosysteme),
- Erarbeitung von Modellen zur Prognose der Auswirkungen unterschiedlicher Maßnahmen (Eingriffsfolgenvorhersage über Szenarien),
- Bereitstellung von Entwicklungszielen, d.h. konkreten und konsensfähigen Maßnahmenvorschlägen zur kurzfristigen Verbesserung bzw. Stabilisierung der ökologischen und sozio-ökonomischen Bedingungen,
- Entwicklung von Instrumentarien zur Erfolgskontrolle umgesetzter Maßnahmen.

Eine detaillierte Darstellung der prioritären Forschungsaufgaben erfolgt in den drei Teilkonzepten "Ökologie der Fließgewässer", "Ökologie der Auen" sowie "Landnutzung im Einzugsgebiet":

Prioritäre Forschungsaufgaben im Teilkonzept "Ökologie der Fließgewässer" beziehen sich u.a. auf ökomorphologische Fragen, so z.B. die Erfassung der räumlichen und zeitlichen Veränderungen der gewässermorphologischen Strukturen und deren ökologischer Funktionen sowie der Ermittlung funktionaler und kausaler Wechselbeziehungen. Es sollen Prognoseinstrumente entwickelt werden, die eine Abschätzung der Auswirkungen anthropogener Maßnahmen sowohl auf abiotische Faktoren als auch auf biotische Funktionen und Prozesse im Strom und in den Auen ermöglichen. Hinsichtlich der Stoffdynamik erfolgte die Schwerpunktsetzung auf die strukturgebundenen stofflichen Umsetzungsprozesse an und unter der Gewässersohle sowie in Buhnenfeldern. Ein weiterer Aufgabenbereich umfaßt die Entwicklung eines überregional anwendbaren Bioindikationssystems für Fließgewässer, das auf den Lebensstrategien der Makroinvertebraten basiert. Im Bereich Arten und Lebensgemeinschaften sollen fisch-ökologische Untersuchungen die funktionalen Zusammenhänge zwischen den morphologisch-strukturellen Rahmenbedingungen des Ökosystems und den unterschiedlichen Habitatansprüchen der typischen Elbefischarten aufklären.

Die Forschung im Bereich "Ökologie der Auen" hat vor allem zum Ziel, die Lebensbedingungen der elbetypischen Auenflora und -fauna in Abhängigkeit von der spezifischen Dynamik zwischen Abflußregime und Oberflächen- sowie Grundwasserhaushalt aufzuklären und die Einflüsse von anthropogenen Eingriffen, wie z.B. Hochwasserschutzmaßnahmen, Landbewirtschaftung, Kiesabbau, auf unterschiedlichen räumlichen und zeitlichen Maßstabsebenen, abzuschätzen. Gegenstand der Forschung wird die Ermittlung geeigneter meßbarer Parameter, objektiver Bewertungsmaßstäbe und naturraumspezifischer ökologischer Leitbilder sein. Weiterhin stehen Fragen zum ökologischen Hochwasserschutz (Retentionsflächenrückgewinnung) und zu umweltgerechter Landnutzung sowie die Entwicklung von Bioindikationssystemen für Auen im Blickpunkt der Untersuchungen.

Die Projekte im Forschungsbereich "Landnutzung im Einzugsgebiet" sollen Wege aufzeigen, wie gemeinsam mit den zuständigen Behörden Konzepte zur dauerhaft-umweltgerechten Landnutzung in unterschiedlichen Natur- und Wirtschaftsräumen in die Praxis umgesetzt werden können. Hierbei bildet die wissenschaftliche Begleitung von Umsetzungsvorhaben in Modellgebieten einen Schwerpunkt. Angestrebt wird die (Weiter-) Entwicklung von Managementkonzepten, die eine flächendeckende Umsetzung sozio-ökonomisch akzeptierter und an die ökologische Empfindlichkeit der Standorte angepaßter Nutzungsformen erlauben, sowie von Instrumentarien zur Erfolgskontrolle umgesetzter Maßnahmen.

Eine wesentliche Aufgabe der "Projektgruppe Elbe-Ökologie" besteht darin, die Rolle einer "Drehscheibe" für Daten, Informationen und Methoden im Rahmen der "Ökologischen Forschung in der Stromlandschaft Elbe" zu übernehmen, d.h. den Informationsfluß und Erfahrungsaustausch der Forschungsnehmer untereinander sowie zwischen Forschungsnehmern und vollziehender Praxis zu gewährleisten. Zur Abstimmung dieses Themenbereichs wurde ein Fachgespräch durchgeführt, in dessen Ergebnis das auf Internet und World Wide Web konzipierte Informationssystem "ELISE" aufgebaut wird.

Ziele

Wie in der Einleitung dargestellt, ist es eine wesentliche Zielstellung dieses interdisziplinären Forschungsprogramms, der vollziehenden Praxis konkrete Entscheidungsgrundlagen für die Lösung von Interessens- oder Nutzungskonflikten bei der zukünftigen Entwicklung der Elbelandschaft zur Verfügung zu stellen. Zur Abwägung von Entscheidungsalternativen und für die Akzeptanz von Maßnahmen kommt einer umfassenden sozio-ökonomischen Bewertung direkter und indirekter Wirkungen unterschiedlicher Entwicklungen in Raum, Aue und Fluß eine wesentliche Bedeutung zu. Die Integration dieses Wissenschaftszweiges in ökologische Forschungsprogramme, wie z.B. in das der Elbe-Ökologie, stellt eine wesentliche Voraussetzung für die Gewährleistung der Praxisrelevanz der Ergebnisse dar. Dies bedeutet, daß bei der Erarbeitung von Nutzungsstrategien oder konkreten Managementkonzepten nicht nur ökologische, sondern insbesondere auch ökonomische und soziale Aspekte von Anfang an mit in den interdisziplinären Forschungsprojekten bearbeitet werden müssen.

Ziel des Fachgespräches war es daher, ausgehend vom nationalen und nach Möglichkeit auch internationalen Stand der Diskussion, vorliegende umwelt- und sozio-ökonomische Erfahrungen (z.B. von der Donau) vorzustellen und zu diskutieren. Auf dieser Basis sollten

geeignete Ansätze für die fachlich sehr unterschiedlichen Fragestellungen im Elbe-Ökologie-Programm herausgearbeitet, wesentliche Forschungsdefizite im sozio-ökonomischen Bereich aufgezeigt und die mög-liche weitere Vorgehensweise abgestimmt werden.

Gegenstand der Erörterungen sollten ferner Fragestellungen zu umweltökonomischen Bewertungsverfahren, zur Durchführung ganzheitlicher Kosten-Nutzen-Analysen und zu bestehenden oder zu entwickelnden umweltökonomischen Prognose-Instrumentarien sein. Hierbei sollten die wesentlichen Interessens- oder Nutzungskonflikte in der Stromlandschaft Elbe berücksichtigt werden, wie z.B. im Bereich

- Fließgewässer: Schiffahrt, wasserbauliche Maßnahmen, Renaturierung, Fischerei
- Auen: ökologischer Hochwasserschutz, Deichrückverlegung, Naturschutz, Landwirtschaft, Tourismus
- *Einzugsgebiet:* Landwirtschaft (z.B. ökonomische Bewertung und Quantifizierung ökologischer Leistungen), Wasserwirtschaft, Naturschutz

Gegenstand der Diskussionen sollte außerdem die Gestaltung eines übergreifenden sozioökonomischen Gesamtrahmens für das Elbe-Ökologie-Programm sein, auch um unterschiedliche Ansätze der Sozio-Ökonomie auf der Mikro- und Makroebene in den Verbundvorhaben der Elbeforschung miteinander verknüpfen zu können. Weitere Fragen, die in der Diskussion zu berücksichtigen waren:

- Welche praxisrelevanten sozio-ökonomischen Methoden zur Bewertung von Natur und Landschaft gibt es?
- Welche Methoden sind für welche Problemstellungen geeignet, wo liegen spezifische Vor- und Nachteile?
- Was kann die Sozio-Ökonomie für die Erarbeitung dauerhaft-umweltgerechter Entwicklungskonzepte leisten, welches sind die Möglichkeiten und wo sind die Grenzen?
- Wie müssen sozio-ökonomische Ergebnisse aufbereitet sein, damit sie von der vollziehenden Praxis in deren Entscheidungsprozeß einbezogen werden können?
- Welche Funktionen haben die Sozialwissenschaften im Regionalentwicklungs- und speziell im Umsetzungsprozeß?
- Welche existierenden Schnittstellen zwischen Ökologie und Ökonomie (z.B. Öko-Audit) können aufgegriffen werden?
- Für welche Fragestellungen existiert bereits Konsens hinsichtlich der Verwendung bestimmter ökonomischer Bewertungsmethoden?
- Wer bewertet (Politiker?, Wissenschaftler?, beide?) auf welcher Basis?
- Ist der Total-Economic-Value als grundlegender Bewertungsansatz geeignet?
- Wie k\u00f6nnen in sog. Vollkostenrechnungen bzw. umwelt-\u00f6konomischen Gesamtrechnungen die Probleme der Kostenzurechnung gel\u00f6st werden?
- Wie können "ökologische Gratisleistungen" monetarisiert werden?
- Welche Bedeutung kommt der Szenarienanalyse bei der vergleichenden Bewertung von Maßnahmen zu? Inwieweit kann diesbezüglich auf rechnergestützte Verfahren zurückgegriffen werden?

Anhand von zwei Zitaten sollte aufgezeigt werden, daß die "Ökonomische Bewertung von Landschaften" bereits seit Jahrzehnten Gegenstand wissenschaftlicher Untersuchungen ist und daß sich die "Ecological Economics" als Umwelt- und Ressourcenökonomie mit verschiedenen Aspekten des Naturerhalts befassen:

"KRUTILLA und andere Autoren zeigen, daß die notorische Rechtfertigung naturzerstörender Aktivitäten durch ökonomische Experten gerade nicht auf fachgerechter Analyse (auf "harten Fakten", wie es heißt) beruht, womit Naturerhalt, wie es wohl die Meinung zahlreicher Naturschützer ist, allein durch Hinwegsetzung über ökonomische Rationalität angestrebt werden könnte.

Ganz im Gegenteil beruhen viele Kosten-Nutzen-Analysen, welche technischen Großprojekten Wirtschaftlichkeit bescheinigen, auf unzureichenden Problemformulierungen, selektiver Wahrnehmung der Realität und versteckten Werturteilen. Konsequente ökonomische
Analysen können hier zu gegenteiligen Ergebnissen kommen, allein ...by applying tools and
concepts of conventional economic theory in somewhat unconventional situations."
[KRUTILLA et al., 1975, zitiert in HAMPICKE 1991]

Prinzip des Safe Minimum Standard: Alle ökonomischen Aktivitäten sollen sich in solchen Grenzen bewegen, daß die ökologische Substanz der Biosphäre - ihr Artenreichtum, ihre Selbstregulationsfähigkeit usw. - nicht angetastet, sondern unabhängig von den Umständen des Einzelfalls respektiert wird. [CIRIACY-WANTRUP, 1952, zitiert in HAMPICKE 1991]

Funktionen der Sozio-Ökonomie in der umsetzungsorientierten ökologischen Forschung:

- Lösung von umweltpolitischen Ziel-/ Nutzungskonflikten
- Konsensfindung bei der Festlegung kurzfristig umsetzbarer Entwicklungsziele
- Verbesserung der Akzeptanz f
 ür konkrete Maßnahmenkonzepte
- Ermittlung der Kosten von Nutzungseinschränkungen z.B. durch Auflagen des Gewässerschutzes
- Verbesserung des Eingangs ökologischer Erkenntnisse in die Praxis durch die frühzeitige Einbindung der Sozio-Ökonomie
- Prognose der ökonomischen Auswirkungen infolge einer Veränderung der Rahmenbedingungen (Szenarien)
- Erarbeitung von Vorschlägen für Einkommensalternativen
- Quantifizierung externer Kosten
- Ökonomische Bewertung ökologischer Leistungen
- Durchführung von ökologisch erweiterten Kosten-Nutzen-Analysen

Die Daten einer Studie von WICKE (1993, zitiert in RENNINGS 1994), dargestellt in Tabelle 1, zeigen, daß ökologische Schäden zumindest im Rahmen von gesamtwirtschaftlichen Kostenschätzungen monetarisiert werden können und daß diese Kosten einen beträchtlichen Anteil am Bruttosozialprodukt ausmachen; dies trifft insbesondere auf die neuen Bundesländer zu.

Die im Rahmenkonzept der Forschungskonzeption dargestellte leitbild-orientierte Vorgehensweise zieht sich als "roter Faden" sowohl durch das Gesamtvorhaben "Elbe-Ökologie" als auch durch die einzelnen interdisziplinär zusammengesetzten Verbundforschungsprojekte. Sie soll die Übernahme wissenschaftlicher Ergebnisse in politische und behördliche Entscheidungen sicherstellen. Außerdem wird die Strukturierung, Verknüpfung und Effizienzkontrolle interdisziplinärer Forschungsprojekte erleichtert. Abbildung 1 zeigt anhand einer schematisierten Darstellung das Zusammenwirken von Zustandsanalysen, Leitbildern und Entwicklungszielen. Im Prozeß der Kompromißfindung zwischen ökologisch begründeten und nutzungsorientierten Leitbildern kommt insbesondere der Sozio-Ökonomie eine entscheidende Rolle zu, damit auf der Basis von kurzfristig erreichbaren Entwicklungszielen - definiert als aus ökologischer Sicht realisierbare Ziele, die Nutzungsinteressen und soziokulturelle Aspekte berücksichtigen - konkrete Handlungskonzepte und Maßnahmen abgeleitet werden können.

Literatur

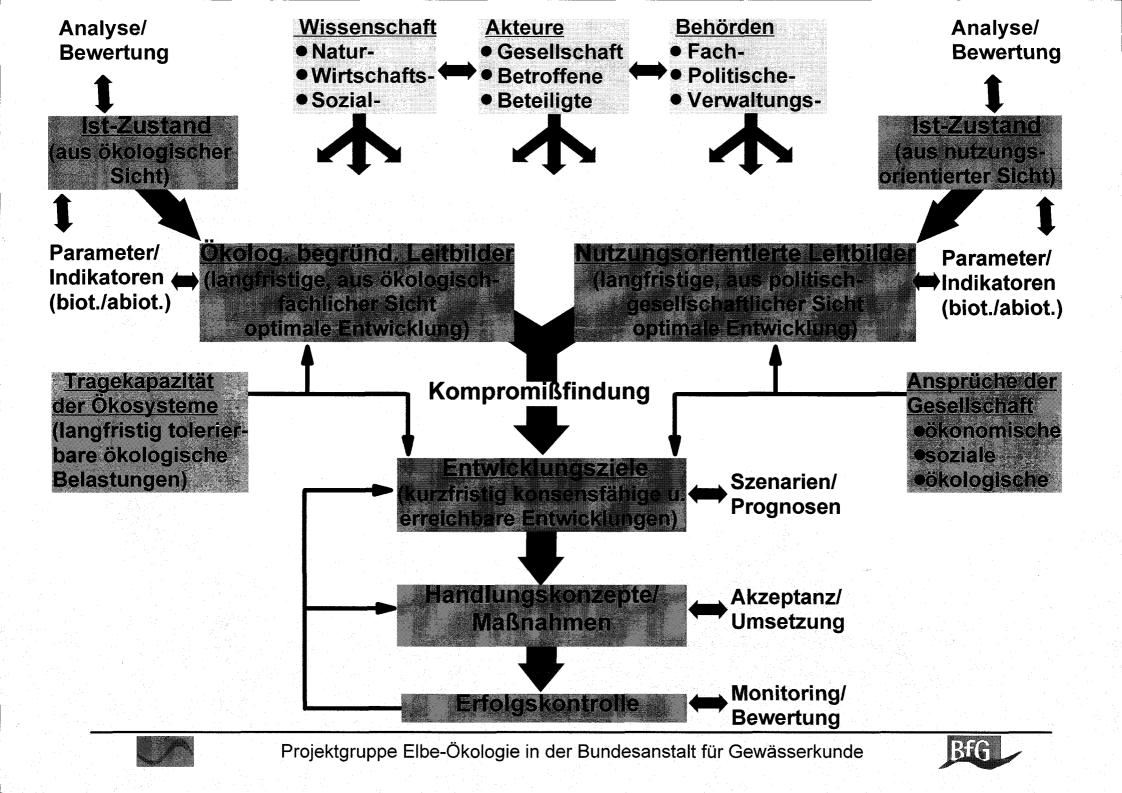

- Endres, A. (1994): Umwelt-Ökonomie Eine Einführung, Wissenschaftliche Buchgesellschaft Darmstadt, 194 S.
- Hampicke, U. (1991): Naturschutz-Ökonomie. Verlag Eugen Ulmer, 342 S.
- Rennings, K. (1994): Indikatoren für eine dauerhaft-umweltgerechte Entwicklung. Materialien zur Umweltforschung herausgegeben vom Rat der Sachverständigen für Umweltfragen, Verlag Metzler-Poeschel Stuttgart, 225 S.

Tabelle 1: Die Ökologische Schadensbilanz für Deutschland 1984 und 1992 (Kenntnisstand 1992, in Mrd. DM pro Jahr, Preise 1984/1992)

Schadenspositionen	Schadenskosten 1994 (alte Bundes- länder) nach Wicke (1986)	Schadenskosten 1992 (alte Bundesländer)	Schadensschätzung 1992 (neue Bundesländer)	Schadenskosten Deutschland (z.T geschätzt 1992)
1. Luftverschmutzung	rd, 48 Mrd. DM	über 25 Mrd. DM	über 12 Mrd, DM	über 37 Mrd. DM
div. Einzelpositionen (Preise 1984)			3301 72 111G. 2111	
Gesundheitsschäden	über 2,3-5,8	ca. 5,4	über 2,7	über 8.1
 Materialschäden 	über 2.3	ca, 2.8	über 1,4	über 4.2
- Waldschäden	über 5,5-8,8	über 5,5	über 2,8	über 8,3
Gewässerverschmutzung darunter:	über 17,6 Mrd. DM	rd 10 Mrd. DM ¹	über 12,5 Mrd. DM	über 22,5 Mrd. DM
Kosten der Trink- und Brauchwasserversorgung	über 9,0	1,7		
3. Bodenbelastung	weit über 5,2 Mrd. DM	ca. 50,5 Mrd. DM (28,3-72,4)	über 36,7 Mrd. DM	über 87,2 Mrd. DM
Schadens-, Ausweich-, Vermeidungs- sowie Planungs-				
und Überwachungskosten (Preise 1988) bei:				
 Art- und Biotopschädigung 		4,0-4,3		
 Abbau von Rohstoffen 		0,2-0,7		
 Nahrungsmittelproduktion 		2,6-3,9		
 Abfallablagerung und Altlasten 		14,0-47,5		
(darin Altlastensanierung)	(-1,7)	(3-10)	(3-10)	
- Grundwasser		3,9-6,7		
I. Lärm	über 32,7 Mrd. DM	29,5 Mrd. DM	5 Mrd. DM	34,5 Mrd. DM
darunter: Zahlungsbereitschaft zur Vermeidung von (Preise 1989)				
 Straßenverkehrslärm 		12,8		
 Schienenlärm 		5,3		
 Fluglärm 		0,4		
 Industrie- und Gewerbelärm 		5,2		
Kosten des Lärms am Arbeitsplatz (Lärmschwerhörig-		1,8-2,8		
keit, Herz-Kreislauf-Krankheiten, ohne Produktivitäts-				
verringerung)				
5. Kosten unterlassenen Naturschutzes	über 1,0 Mrd. DM	3,4 Mrd. DM	1,7 Mrd. DM	5,1 Mrd. DM
6. Vermeidungskosten globaler und länderüber- greifender Umweltschäden (-katastrophen)		(15 Mrd. DM)	(2 Mrd. DM)	17 Mrd. DM
Kosten CO-Minderung/ -reduzierung				über 15
West-Ost-Umkooperation			•	1
Beitrag Tropenwaldrettung				1
Gesamtschadenskosten (Summe Pos. 1. bis 6.):	über 103,5 Mrd. DM	über 133,4 Mrd. DM	über 69,9 Mrd. DM	über 203,3 Mrd. DM
Anteil am jeweiligen Bruttosozialprodukt	5.8%	4.9%	28,9%	6,8%
7. Übergreifende Umweltbelastungskosten: ²		9.2 Mrd. DM		
- Freizeit und Erholung		40-65 Mrd. DM		
Psychosoziale Kosten (Preise 1988)				
 Nachfrage nach (Zahlungsbereitschaft für) ver- 		40-94.4 Mrd. DM		
besserte Umweltqualität (Preise 1988)		32 Mrd. DM		
 Volkswirtschaftliche Umweltschutzaufwendungen (Preise 1988) 				

¹ Weitere Gewässerverschmutzungskosten in Höhe von max. 6,7 Mrd. DM sind bei der Bodenbelastung (Grundwasser) enthalten.

² Vergleichswerte zu Gesamtschadenskosten aus Einzelpositionen 1. bis 6.

Ulrich Hampicke

Möglichkeiten und Grenzen der Monetarisierung der Natur

Die monetäre, geldliche Bewertung der Natur oder - bescheidener gesagt - von Leistungen der Landschaft ist ein kontroverses Thema. Für die einen ist sie eine Art Wunderheilmittel, für die anderen eine Droge. Daher ist sehr zu begrüßen, daß hierüber im vorliegenden Rahmen ein überlegtes und ruhiges Gespräch geführt werden kann.

Sehr schnell wird dabei ein Aspekt deutlich werden, der - man muß sagen, fast unverständlicherweise - zu wenig Beachtung findet: Man meint, Monetarisierung, geldliche Bewertung, sei in der gewohnten Umgebung im normalen Wirtschaftsleben eine alltägliche Routine und werfe normalerweise keine Probleme auf. Nur wenn man sie auf Natur und Landschaft anzuwenden versuchte, ergäben sich spezifische Schwierigkeiten, die soweit gehen könnten, daß diese Versuche scheiterten. In Wirklichkeit sind aber die bei diesen Anwendungen auftretenden Probleme oft weder besonders neu noch spezifisch, sondern könnten fast überall beobachtet und auch kritisiert werden. Das eigentliche Problem besteht darin, daß man in den alltäglichen Anwendungsfeldern der Monetarisierung über diese Probleme meist hinwegsieht, obwohl sie dort auch bestehen. Wird nun in der Landschaft zu monetarisieren versucht, dann fallen diese Probleme nur besonders auf - das ist meine These, und es ist vielleicht lohnend, ihr heute etwas im Detail nachzugehen.

Ich möchte gleich zu Beginn ein vielleicht aufschlußreiches Beispiel geben. Oft heißt es mit Entrüstung: Wie kann man nur die Natur oder die Landschaft "an sich" monetarisieren, das könne doch gar nicht möglich sein. Die Begründungen lauten, je nach Temperament des Kritikers, entweder mehr technisch, daß für diese Dinge kein Markt herstellbar sei, oder mehr philosophisch, daß sie etwas Höheres und damit ökonomisch Intangibles darstellten. Die Kritiker haben Recht, eine derartige Monetarisierung ist auch nicht möglich. Aber sie rennen offene Türen ein. Kein Ökonom will die Natur "an sich" monetarisieren, und zwar nicht deshalb, weil das bei der Natur nicht möglich wäre (sonst aber wohl), sondern weil dies überhaupt nicht geht und auch bei den alltäglichsten wirtschaftlichen Dingen unmöglich ist.

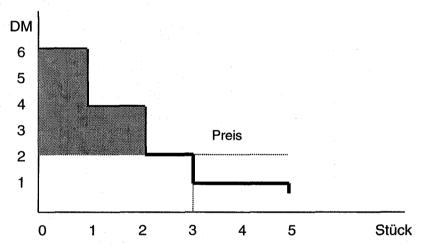
Haben Sie schon einmal versucht, "das Brot", "das Wasser" oder "das Bier" schlechthin zu monetarisieren? Um wieviel wäre die Nation ärmer, wenn es in einem Jahr gar kein Brot, kein Wasser oder kein Bier gäbe? Besteht der Wert des Brotes schlechthin etwa in den Umsätzen aller Bäcker im Laufe eines Jahres? Natürlich nicht, und die hier gestellten Fragen sind schlicht Unsinn. Es gibt keinen absoluten Geldwert für alles Brot auf der Welt oder - übertragen - für alle Nahrung auf der Welt, denn wenn es keine Nahrung gäbe, dann gäbe es auch uns nicht.

Wenn es für diese einfachen und alltäglichen Dinge keinen absoluten Geldwert gibt, dann ist es doch kein Wunder, daß dies für die Leistungen von Natur und Landschaft ebensowenig zutrifft. Das ist gar nichts Besonderes. Beim Brot können wir sagen, daß jeder von uns in ihrer oder seiner speziellen Situation, hungrig oder weniger hungrig, wohlhabend oder weniger wohlhabend, einen bestimmten Geldbetrag zu zahlen bereit ist, um Brötchen zum Frühstück zu haben. Die Bäcker wiederum verlangen in ihrer speziellen Situation, bei ihren

Kosten und ihren Lohnerwartungen, einen bestimmten Geldbetrag, und so bildet sich ein Preis, wie wir ihn kennen. Die derart erfolgende Monetarisierung hat zwei Konsequenzen: Erstens stellt sie eine ungeheure Erleichterung des Alltagslebens dar, welche komplexe Wirtschaftssysteme überhaupt erst funktionsfähig macht. Stellen Sie sich vor, man müßte über jedes Brötchen per Naturaltausch verhandeln. Zweitens, und das ist weniger banal und für unsere Probleme in der Landschaft wichtig, ergeben sich Anreize: Wie schon Adam Smith in seiner berühmten Passage 1776 bemerkte, verdanken wir unsere Brötchen und unser Bier nicht der Wohltätigkeit der Bäcker und Brauer, sondern ihrer Eigenliebe, ihrem Verdienststreben. Alle ökologischen Probleme in der Landschaft bis hin zu den schlimmsten Mißständen lassen sich ökonomisch so deuten, daß keine geldlichen Anreize wirken, um sie zu lindern.

Vielleicht ist durch die Beispiele deutlich geworden, daß wir, wenn wir über Natur und Monetarisierung sprechen, viel bescheidener denken sollten. Es geht nie um Bewertung "an sich", vielmehr fragen wir danach, ob etwas von dieser Alltäglichkeit, dieser Routine im Umgang mit Brötchen und Bier nicht auch im Umgang mit der Landschaft wünschbar wäre. Ein Kennzeichen einer funktionierenden Geldwirtschaft ist doch, daß jeder, der bedient wird, auch bezahlt. Wieder können wir ökonomisch interpretieren, daß die Zerstörung der Landschaft, die wir bis heute weltweit in so erschreckendem Maße beobachten müssen, offenbar daher rührt, daß sich dort viele bedienen, ohne zu bezahlen. Wenn in der Landschaft jeder, der etwas nimmt, auch dafür bezahlen muß, und jeder, der etwas gibt, dafür entlohnt wird, dann könnte es dort - nicht nach versponnener ökonomischer Expertenmeinung, sondern nach aller praktischen Erfahrung, die jeder vernünftige Mensch machen kann - nur besser werden. Das ist der Grund, weshalb wir Ökonomen über Monetarisierung in Natur und Landschaft nachdenken.

Einige mikroökonomische Voraussetzungen

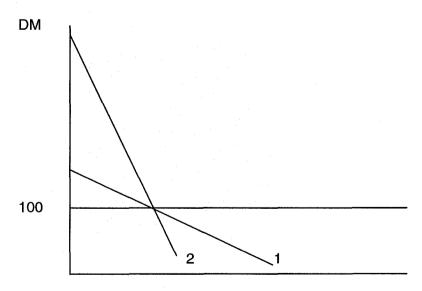

Die Alltagsbeispiele zeigten, daß ein monetärer Wert einer Sache immer nur in einer speziellen Situation bestimmt werden kann. Jeder weiß, daß Brot furchtbar teuer werden kann, wenn Not herrscht. Es kann, selbst wenn es für die Mehrzahl der Wirtschaftssubjekte einen normalen Preis besitzt, für einen Einzelnen furchtbar teuer sein, wenn er sehr wenig Geld hat. Auf die Gefahr hin, hier eine Vorlesungsatmosphäre zu erzeugen, was Sie mir bitte nachsehen mögen (ich bin mit der Vorlesung schnell zu Ende), muß ich auf einige weitere mikroökonomische Zusammenhänge, wie wir sie nennen, hinweisen, die in der öffentlichen Diskussion oft verkannt werden.

Welche Entscheidungssituation liegt vor?

Erstens: Jeder von uns, die oder der in einer Situation monetär abwägt, wägt Alternativen ab. Ökonomisches Denken ist schlechthin Denken in Alternativen. Könnte ich für eine Münze entweder nur ein Brot kaufen oder sonst gar nichts, dann würde ich das Brot, auch wenn ich nur geringen Hunger hätte, sofort kaufen. Normalerweise könnte ich aber mit der Münze Tausende von anderen Dingen kaufen, und, sollte ich mich für das Brot entscheiden, muß

ich mir sagen, daß ich dann auf alles andere, was denselben Betrag gekostet hätte, verzichten müßte. Monetarisieren heißt, Verzichte abzuwägen. Theoretisch dürfte ich erst dann das Brot kaufen, wenn ich sämtliche Alternativen abgewogen und befunden hätte, daß ich sie nicht vorziehen würde. Ich könnte zum Beispiel das Geld auf die Bank bringen und mir von dem durch Zinsen gewachsenen Betrag in zehn Jahren zwei Brote kaufen, was zu der mathematisch außerordentlich anspruchsvollen Theorie der intertemporalen Optimierung hinführt. Natürlich verursacht das Abwägen seinerseits Kosten in Gestalt von Zeit und Denkanstrengung, die soweit steigen können, daß ich verhungerte, bevor ich zu einer Entscheidung gekommen wäre. Es muß also abgewogen werden, wieviel Abwägungsaufwand getrieben werden soll - ich ziehe eine Entscheidung, die bei voller Information suboptimal wäre, dem Verhungern vor. Es gibt kein perfektes Abwägen, aber es gibt ein den Umständen gemäß möglichst gutes Abwägen. Wenn das alle täten, gäbe es weniger bereute Spontankäufe und weniger Umtauschaktionen.

Abbildung 1: Konsumentenrente

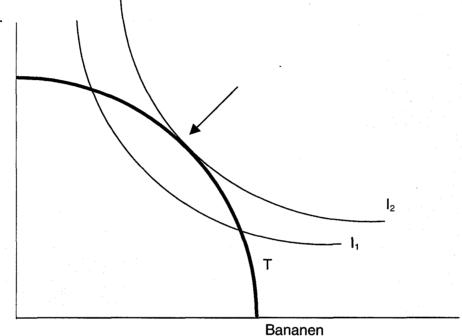


Zweitens: Alle Entscheidungen fallen nach, wie wir sagen, *marginalen* Abwägungen. Es interessiert weniger, welchen Wert bestimmte Größen überhaupt oder im Durchschnitt haben, sondern, wie sie sich an der Grenze, an der entschieden werden muß, gerade ändern. Ein Beispiel (Abbildung 1): Ich möge bereit sein, für ein Gut X, sagen wir, ein kleines Blumensträußchen, maximal 6 DM zu bezahlen. Nun besitze ich auch drei Flaschen Bier, jede zu 2 DM. Heißt das, daß ich auch die drei Flaschen Bier für das Blumensträußchen tauschen würde? Wie die Abbildung zeigt, heißt es das keineswegs. Nach meiner Nachfragekurve, welche meine Präferenzenstruktur widerspiegelt, bin ich bereit, für die dritte Flasche Bier den Preis von 2 DM zu entrichten, vom Kauf einer vierten sehe ich ab, weil ich nur noch 1,50 DM für sie zu zahlen bereit wäre, was den Marktpreis unterschreitet. Im allgemeinen hätte ich aber für die erste und zweite Flasche mehr als den Marktpreis von 2 DM bezahlt, weil ich ganz ohne Bier so durstig war. Zu dem gezahlten Betrag von 6 DM kommt noch die von uns so genannte *Konsumentenrente* (schattiert) hinzu, auf die ich ebenfalls verzichten würde, wenn ich statt 6 DM in Münzen die drei Flaschen Bier opfern würde. Aus den 6 DM können dann schnell 12 DM werden wie in der Abbildung 1.

An diesem Beispiel erkennen wir das Grundprinzip der Monetarisierung, hier speziell der Zahlungsbereitschaftsanalyse, wie es in jeder Kosten-Nutzen-Analyse auch im Zusammenhang mit der Natur zum Tragen kommt: Jede Feststellung der Zahlungsbereitschaft unterstellt, daß die Wirtschaftssubjekte mit der Umlenkung ihrer Kaufkraft auf eine neue Alternative auf andere Güter und Leistungen marginal verzichten. Angenommen, mein Einkommen bleibt konstant, aber es kommt etwas auf den Markt, was ich für 100 DM kaufen möchte: Dann heißt das nicht, daß ich für 100 DM auf ein anderes Gut verzichte, sondern daß ich überall an der Grenze, bei den letzten konsumierten Einheiten, Ausgaben abziehe, bis die 100 DM zusammengekommen sind. Ich trinke eine Flasche Bier weniger, trage meine Schuhe eine Woche länger, überall knapse ich ein wenig ab - natürlich spielt hier die Teilbarkeit der Güter eine große Rolle.

Unterschätzen wir nicht die Tragweite dieses Sachverhalts. Er erschwert außerordentlich den Vergleich zwischen "großen" Alternativen. Denn auch umgekehrt: wenn zwei Güter am Markt je 100 DM kosten würden, dann heißt das keineswegs, daß man mir mit beiden eine gleich große Freude bereiten würde, wenn man sie mir schenkte, denn ich kann bei beiden eine außerordentlich unterschiedliche Konsumentenrente genießen (Abb. 2). Wenn also der Staat zwischen zwei Groß-Investitionsprojekten wählen muß, die beide in Marktpreisen einen gleich großen Erfolg versprechen, so steht für eine gute Kosten-Nutzen-Analyse keineswegs fest, daß beide gleich empfehlenswert wären. Fachlich-ökonomisch interessieren uns viel weniger die Marktpreise und viel mehr die Konsumentenrenten. Am Rande bemerkt ist dies auch der Grund dafür, daß es so schwierig ist, derartige Dinge in der Sozialproduktsberechnung zu berücksichtigen, denn dort werden nur Marktpreise, nicht aber Konsumentenrenten dokumentiert.

Abbildung 2: Unterschiedlich hohe Konsumentenrenten bei gleichem Marktpreis


Welche Rahmenbedingungen liegen vor?

Erstens: Aller Monetarisierung in der Ökonomie liegt als Grundvorstellung ein Gleichgewichtsmodell einer voll ausgelasteten Wirtschaft zugrunde. Jede Wirtschaft hat eine bestimmte Kapazität an Produktivkräften. Robinson mag auf seiner Insel zwei Güter produzie-

ren, Kokosnüsse und Bananen. Die sogenannte Transformationskurve zeigt an, welche Kombination von beiden er unter Ausnutzung aller Produktivkräfte, also maximal erzeugen kann. Sein Glücksniveau, das Maß seiner ökonomischen Zufriedenheit kann nun mit den sogenannten Indifferenzkurven wiedergegeben werden. Wo die höchste dieser Indifferenzkurven die Transformationskurve gerade noch tangiert, dort liegt unter allen technisch möglichen die ökonomisch optimale Kombination von Kokosnüssen und Bananen (Abbildung 3).

Abbildung 3: Optimale Allokation bei Kapazitätsauslastung

Theoretisch macht alle Monetarisierung überhaupt nur einen Sinn, wenn wir uns auf der Transformationskurve befinden, wenn die Wirtschaft voll ausgelastet ist. Nur dann muß, wenn wir etwas mehr Kokosnüsse haben wollen, dafür zwingend in Gestalt von etwas weniger Bananen bezahlt werden und umgekehrt. Solange wir uns unterhalb der Auslastungskurve befinden, könnten wir, wenn wir klüger wirtschaften würden, von beiden Produkten gleichzeitig mehr haben, ohne auf etwas verzichten zu müssen. Es gibt dann keine Kosten und folglich keinen Anlaß, diese in Geld auszudrücken.

Bundesbank und Sachverständigenrat errechnen Auslastungszahlen für die Deutsche Wirtschaft im Bereich von etwa 94% für die letzten Jahre; wir befinden uns klar unterhalb der Transformationskurve. Allgemein bekannt sind die Arbeitslosen von über 4 Millionen. Dieser Umstand besagt allerdings auch wiederum nicht, daß jede Monetarisierung auch praktisch sinnlos wäre. Jedoch muß jedes derartige Ergebnis sehr sorgfältig interpretiert werden. Es gilt sozusagen nur mit einer bestimmten, begrenzten Reichweite. Wir müssen immer sagen: Eigentlich könnten wir jedes zusätzliche Produkt in unserer Wirtschaft zum Preis von Null, nämlich durch Mobilisierung brachliegender Ressourcen, erhalten. Unter die zusätzlichen "Produkte" fielen auch alle Verbesserungen in Natur und Landschaft. Dies erforderte aber so viele Umstrukturierungen institutioneller, rechtlicher, habitueller und anderer Art, wie sie kurz- bis mittelfristig nicht realisiert werden können. Die Strukturstarrheit ist der Grund dafür, daß bestimmte erwünschte Dinge Kosten verursachen, nicht ein Ressourcenmangel.

Zweitens: Im liberalen Marktmodell sprießt alle Monetarisierung, wenn auch über Umwege, aber letztlich doch aus den Wertschätzungen der individuellen Menschen. In den Worten Paul Samuelsons: "Individual's preferences are to count". Es sollen so viele Brötchen gebacken werden, wie nach den Wünschen der Konsumenten gekauft und bezahlt werden, nicht aber, wie es eine zu diesem Zwecke gebildete Bund-Länder-Kommission aus Ministerialdirigenten mit einem vom Bundespräsidenten ernannten und vom Bundesrat in geheimer Abstimmung nach Anhörung der beteiligten Kreise mit einfacher Mehrheit bestätigten Backwarenverordnungsoberpräsidenten in Umsetzung der einschlägigen EU-Richtlinie unter strikter Beachtung bestehender bilateraler Handelsverträge sowie der Bestimmungen der WTO unter Wahrung der Interessen des örtlichen Backhandwerkes und nicht zuletzt auch mit dem Ziel einer angemessenen Versorgung der Bevölkerung allwöchentlich für die kommende Backperiode, beginnend Montags, 4.30 Uhr, außer nach bundeseinheitlichen Feiertagen, durch Bekanntgabe in überörtlichen Tageszeitungen verfügt wird. So soll es nicht sein, sondern die Konsumenten sollen einfach Nachfragesignale an die Bäcker aussenden, welche diese schon richtig verstehen.

Sie mögen meine Persiflage gelungen oder albern finden - das ist nicht so wichtig. Aber blicken Sie sich bitte einmal um. Nicht bei den Brötchen, aber bei Milch, Zuckerrüben, Raps, Bananen, Wein, bis vor kurzem auch beim Getreide - dort wird genau so verfahren wie geschildert, und die Prozeduren der Agrar-Planwirtschaft sind ebenso lächerlich wie dort, wir haben uns nur an sie gewöhnt. Es ist heute nicht unsere Aufgabe, diesen Zustand überhaupt zu beurteilen oder zu kritisieren, nur muß es vor diesem Hintergrund immer heikel sein, eine Bewertungsmethode wie die Monetarisierung anzuwenden, welche ihre innere Logik, sozusagen ihre Lebenskraft, aus dem Modellzustand eines ökonomischen Gleichgewichts ohne ständige Eingriffe zieht. Wir wollen ökonomische Vernunft säen, aber die benötigt fruchtbaren Boden, und wir säen sie sozusagen auf Sand und Steine, und da verwundert nicht, wenn die Saat nur teilweise aufgehen kann.

Probleme und Fehlerquellen bei der Monetarisierung

Ich fasse die dargestellten mikroökonomischen Ausgangspunkte noch einmal zusammen:

- Das Grundmodell beruht auf der Vorstellung individualistischer Entscheidungen.
- Im reinen ökonomischen Modell gibt es Preise nur bei Knappheit und damit bei Auslastung von Kapazitäten.
- Die Monetarisierung ist der Ausdruck dessen, daß vergleichbare Alternativen miteinander abgewogen werden.
- Wohlfahrtsrelevant sind Konsumentenrenten und weniger die Marktpreise.

Im Anschluß hieran wären nun zahlreiche grundsätzliche oder auch mehr praktische Probleme anzusprechen, wozu die Zeit nicht ausreicht. Daher habe ich ganz grob nur zwei Problemkomplexe ausgesucht, die mir am wichtigsten schienen, und möchte diese mit Beispielen vorführen.

Moralische Grenzen

Heute ist es leider modern, Liberalismus und Individualismus mit Rücksichtslosigkeit und Ellenbogengebrauch gleichzusetzen. Wenn das so weitergeht, werden sich Gegenbewegungen breitmachen, welche meinen, daß dem allgemeinen Wohl nur durch Unterdrückung der Freiheit, durch Gleichschritt und Brüllen im Chor gedient werden könne. Ansätze gibt es schon. Der Mißbrauch ökonomischer Entscheidungsfreiheit, auch der Mißbrauch monetärer Bewertung, ist eine schlimme Gefahr, aber auch hier gilt, daß dies nicht auf Probleme von Landschaft und Natur beschränkt, sondern überall der Fall ist.

Richtig verstandener Individualismus, richtig verstandene Marktwirtschaft meinen nicht, daß alles erlaubt ist, was gefällt, sondern alles, was gefällt und was anderen nicht schadet. Es ist alles erlaubt, was keine rational begründeten Normen verletzt. Auf den Zusatz "rational begründet" kommt es an, denn das Kennzeichen einer vernünftigen Gesellschaft ist, daß sich diese Normen nicht irgendein Mächtiger ausdenkt und verkündet - der Kaiser, die Kirche oder die Partei -, sondern daß sie von allen urteilsfähigen Menschen nachvollzogen und als notwendig auch in ihrem eigenen Interesse erkannt werden können. Seit Kant ist z.B. eine der wichtigsten Normen die, daß ein Mensch nie nur als Mittel zum Zweck angesehen werden darf, sondern einen Selbstzweck, eine Würde, wie er sagte oder in moderner Sprechweise einen intrinsischen Wert besitzt, daß er gegen nichts auf der Welt austauschbar ist. Daraus folgt, daß ein Mensch nicht monetär bewertbar ist, denn monetarisieren lassen sich nur Mittel zum Zweck und nur solche Dinge, die austauschbar sind. Mathematisch gesprochen, ist der Wert eines Menschen "über alle Grenzen groß".

Wer nun der Natur einen intrinsischen Wert, eine Würde zumißt, muß fordern, daß sie ebensowenig monetarisierbar sei wie ein Mensch. Die so denkenden Menschen werden auch als "Biozentriker" bezeichnet, sie besitzen ein biozentrisches anstatt anthropozentrisches Weltbild. Natürlich ist es eine äußerst strittige Frage, welches von beiden Weltbildern "richtig" ist - "richtig" in Anführungszeichen, soweit ein Weltbild richtig sein kann. Zum Glück folgen aus diesem ungeklärten philosophischen Problem kaum praktische Schwierigkeiten, denn für einen Anthropozentriker ist die Natur in ihrer Existenz ebensowenig monetär bewertbar wie für einen Biozentriker, allerdings aus einem anderen Grunde.

Nehmen wir eine seltene Art, welche auf der Erde aussterben kann, wenn nicht genug auf sie geachtet wird. Wieviel ist sie in Geldeinheiten wert? Der Biozentriker sagt "unendlich viel", ebenso wie ein Mensch. Der Anthropozentriker, welcher die Natur nicht in ihrem Eigenwert, sondern als Ressource für den Menschen sieht, antwortet: Da müßten wir die künftigen Generationen fragen, wieviel sie ihnen wert ist. Wenn wir sie ausrotten (genauer, wenn wir den zu ihrer Erhaltung notwendigen Aufwand unterlassen), betrifft das nicht nur uns. Auch wenn wir selbst die Art monetär nicht hoch schätzen sollten, dürften wir nicht nach Belieben mit ihr verfahren, sondern müßten an die künftigen Menschen denken, denen sie möglicherweise, ohne daß jene zu dem Problem gehört worden wären, unwiederbringlich weggenommen würde.

Wir müßten also die Künftigen fragen, auch die Künftigen der Künftigen usw., alle. Wenn das möglich wäre, dann könnte ein Teil der Natur vom anthropozentrischen Standpunkt aus

durchaus monetär bewertet werden. Es gelingt natürlich faktisch nicht. Also ist die Frage "Wieviel ist eine Art wert" vom anthropozentrischen Standpunkt aus ebenso sinnlos wie vom biozentrischen Standpunkt, wenn auch aus einem anderen Grund.

Anthropozentrisch gesehen, greift hier die Pflicht, Respekt vor anderen Menschen zu haben, sie nicht ohne triftigen Grund zu schädigen, ihnen dieselben Lebensbedingungen zu gewähren, die man selbst gern genießt. Da es trotz langer Suche keinen Unterschied im moralischen Status von heutigen und künftigen Menschen gibt, sind wir auch zur Rücksichtnahme auf die Späteren verpflichtet. Dies schafft nun eine wenn auch nicht in jedem Einzelfall absolute, aber doch insgesamt sehr starke Grenze für unsere wirtschaftlichen Aktivitäten in der Landschaft. Es darf mit Rücksicht auf spätere Generationen keine irreversiblen Substanzzehrungen der Natur geben, es sei denn, die Einhaltung dieser Pflicht verlangte uns selbst so hohe Opfer ab, daß dies uns auch vom Standpunkt der Künftigen nicht zuzumuten wäre. Empirisch ist bisher kaum ein Fall beobachtet worden, den man in dieser Weise beurteilen müßte, so daß die Pflicht zum Erhalt des Naturganzen greift.

Marktwirtschaft und Monetarisierung wirken immer nur innerhalb moralischer Grenzen, und daß das auch im Umgang mit der Natur so sein muß, ist gar nichts Besonderes, es ist allenfalls erst relativ spät entdeckt worden. Es ist verboten, Zeitgenossen zu bestehlen, auch wenn es profitabel ist (leider passiert es häufig). Also ist es auch verboten, Zukünftige zu bestehlen, und das tun wir, wenn wir ihnen die Natur irreversibel verarmt hinterlassen. Zum Glück ist dieses Position inzwischen als Programm (leider noch nicht als Realität) Allgemeingut - die seit dem Brundtland-Bericht 1987 und besonders seit der Rio-Konferenz 1992 verbindliche Idee der nachhaltigen Entwicklung (Nachhaltigkeit oder Sustainability) drückt dies genau aus. Die Schwierigkeiten liegen im Detail - wenn es auf der Welt noch 10 Vorkommen einer seltenen Art gibt, dann fragt jeder, ob nicht auch 9 genug wären und er selbst nicht der Pflicht zum Erhalt seines eigenen Vorkommens enthoben werden könnte, usw., das ist bekannt. Aber es gibt kaum jemand, der gegen die Idee der Nachhaltigkeit prinzipielle Einwände gültig machen könnte.

Abschließend zum Thema "Moral" erscheinen mir zwei Dinge besonders wichtig:

1. Wenn Dinge oder Wesen aus den geschilderten prinzipiellen Gründen nicht monetarisiert werden dürfen, heißt das nicht, daß nicht Monetarisierungen sozusagen mit beschränkter Reichweite zulässig wären. Ein berühmter Pianist ist wie jeder andere Mensch als Mensch nicht monetär taxierbar. Aber ich würde, wenn ich Zeit hätte, 50 DM für eine Konzertkarte ausgeben, um ihn zu hören. 100 DM wären mir zu teuer. Das Beispiel spricht für sich selbst: Ich meine natürlich nicht, daß er mir als Mensch keine 100 DM wert wäre, sondern daß ich eine bestimmte Zahlungsbereitschaft zum Genuß seiner Leistungen äußere. Ebenso bei der Natur: Das bei uns heute extrem seltene Ackerwildkraut *Kickxia spuria* ist als Wesen nicht monetarisierbar, aber wenn ich Zeit habe, fahre ich für mehrere hundert DM im Sommer in die Fränkische Schweiz, wo ich weiß, daß es noch vorkommt, und genieße es mit Auge und Kamera. Wir sind sehr an der Höhe dieser subjektiven Wertschätzung der Natur durch die Naturliebhaber interessiert - die Methoden zu ihrer Ermittlung wird Herr Elsasser vorstellen (vgl. den Beitrag in diesem Band) - und wir haben die geheime Hoffnung, daß diese Zahlungsbereitschaft, wenn man sie korrekt ermitteln oder dann sogar bündeln

könnte, bereits hinreichte, um die Natur halbwegs integer zu erhalten, so daß die moralische Grenze, von der ab Menschen gezwungen werden müssen, die Natur zu erhalten, gar nicht greifen muß. Das ist zwar nicht gerade mit Kant gedacht, aber die Erfahrung zeigt, daß Pflichterfüllung dann am zuverlässigsten erfolgt, wenn man selbst einen Vorteil davon hat.

2. Die Aufwendungen, mit denen wir unserer Pflicht zum Naturerhalt genügen, sind in aller Regel monetarisierbar - es gibt hier nur praktische (siehe unten), nicht aber prinzipielle Probleme. Es muß extensive Landwirtschaft betrieben, auf Holzernte in bestimmten Wäldern verzichtet werden, die Elbe soll nicht allein zum Verkehrsweg und Vorfluter werden usw. Nach meiner Ansicht ist es kaum eine Übertreibung zu sagen, daß die Monetarisierung dieser Pflichtleistungen, des Abwehraufwandes gegen Naturzerstörung, der Verzichte zugunsten des Naturerhaltes - daß dies die wichtigste Aufgabe der ökonomischen Analyse im Bereich der Natur überhaupt darstellt. Wenn man hier zuverlässige Zahlen hat, dann kann man zur Politik gehen und sagen: Soviel kostet Nachhaltigkeit, nun können Sie entscheiden, ob sie Ihnen zu teuer ist. Für die Agrarlandschaft haben Herr Breitschuh und Kollegen und im bescheideneren Maße auch wir einen Katalog solcher Kosten gesammelt.

Praktische Probleme

Machen wir von den Höhen der Philosophie einen weiten Sprung in die Niederungen der Praxis. Oft ist die Monetarisierung in Natur und Landschaft prinzipiell möglich, aber immer ist sie mühsam. Das soll man auch als Argument von einer gewissen prinzipiellen Bedeutung nicht unterschätzen. Manch einer fragt mich, warum ich nur so wenig monetarisiere oder warum ich nicht schneller damit fertig werde. Ich vermute, daß es mehr Leute gibt (vielleicht sogar unter uns heute), die diese Frage auch mit sich herumtragen und sie nur aus Höflichkeit nicht äußern.

Es ist konzeptionell ein nicht nur einfaches, sondern geradezu primitives Unterfangen, die Individuen eines Ameisenhaufens zu zählen, man braucht nur die einfachste aller Grundrechenarten, die Addition, hierzu. Aber haben Sie es schon einmal versucht? So ähnlich kann es auch bei der Monetarisierung von Leistungen in der Landschaft sein. Die Effekte einer Maßnahme erstrecken sich in alle Richtungen, bedingen sich gegenseitig, stoßen weitere Effekte an - wenn Sie einer Wirkung mühsam nachgespürt haben, hat sich inzwischen die reale Lage schon wieder geändert, und so weiter.

Oft sind wir gezwungen, monetäre Werte nicht nach Maßgabe der Zahlungsbereitschaft der Endkonsumenten zu berechnen, weil die Dinge, um die es geht, Zwischenprodukte sind. Diese Fälle treten ganz typisch im Verkehrs-, Entsorgungs- und allgemein Infrastrukturbereich auf und sind daher auch für den Komplex der Elbe sehr relevant. Ein Beispiel sind Transportkosten. Man berechnet, um wieviel Transportkosten sinken, wenn man Flüsse, wie z.B. die Havel für größere Schiffe schiffbar macht. Ich unterstelle einmal, daß eine solche Kosten-Nutzen-Analyse in jeder Hinsicht korrekt durchgeführt wird, mit realistischen physischen Annahmen über künftige Transportvolumia, überzeugenden Diskontsätzen usw. - Herr Rieken (vgl. den Beitrag in diesem Band) wird uns nachher berichten, wie man das macht.

Man berechnet, um wieviel der Verkehr billiger wird, und die Kostenersparnis wird als Wohlfahrtsgewinn angesehen. Umgekehrt: Sollte man vielleicht aus ökologischen Gründen auf den Ausbau und damit die Transportkostensenkung verzichten, dann ist dies zu interpretieren als entgangene Wohlfahrt. Verfolgen wir einmal diesen Fall weiter: Entgangene Wohlfahrt heißt letztlich theoretisch korrekt entgangene Konsumentenrente. Welche heroischen Annahmen, die nie erfüllt sind, sind aber nötig, um eine Transportverteuerung als Konsumentenrentenentgang in gleicher Höhe zu interpretieren. Von der Verteuerung des Transports (oder der unterlassenen Verbilligung) sind zunächst Grundstoffe betroffen, welche mit Konsumenten selten direkt in Berührung kommen, vielleicht Sand. Der wird weiterverarbeitet, und irgendwann trifft den Konsumenten ein Effekt. Alle Märkte in dieser Kette müßten theoretisch unter vollkommener Konkurrenz funktionieren, paretooptimale Ergebnisse hervorzubringen in der Lage sein, um die Annahme zu rechtfertigen, daß die eingesparten Transportkosten einem Wohlfahrtsgewinn in der errechneten Höhe gleich sind. Dasselbe gilt auf den Märkten für die Bauleistungen bei der Schiffbarmachung. Welcher von diesen Märkten besäße auch nur einen Funken vollkommener Konkurrenz?! Noch schlimmer: Die mit der ökonomischen Theorie unter Ihnen Vertrauten wissen, daß perfektes Funktionieren partieller Märkte in einer Welt der Unperfektion beim Aufspüren von Wohlfahrtseffekten überhaupt nicht weiterhilft. Es gibt das Theorem des Zweitbesten, die General Theory of the Second Best, die hier unsere Hoffnungen zerstört.

Weiter: Nehmen wir an, die bessere Schiffbarkeit durch Ausbau eines Flusses führe zu volkswirtschaftlichen Ersparnissen von 10 Mio. DM im Jahr. Es liegt auf der Hand, daß, abgesehen von dem schon Diskutierten, dies nur dann die Wohlfahrt im unterstellten Ausmaß steigert, wenn die durch diese Rationalisierung eingesparten Produktivkräfte automatisch und ohne Hindernisse zur nächstbesten Verwendung wandern und dort produktiv wirken. Genau wie bei der Arbeit zu hause: Wenn die Zeit der knappe Faktor ist, dann freue ich mich über eine zeitsparende Neuerung, zum Beispiel einen Computer, weil ich dann in der eingesparten Zeit wieder etwas Vernünftiges tun kann, wozu ich sonst nicht in der Lage gewesen wäre. Ebenso im Großen. Ich erinnere an das Ergebnis aus meiner "Vorlesung" vorhin, daß Monetarisierung eigentlich nur einen Sinn macht, wenn alle produktiven Faktoren voll beschäftigt sind. Der Rationalisierungseffekt muß weitergegeben werden. Wenn die rationellere Schiffahrt auf der Havel bei gleicher Leistung 50 Schiffer weniger erfordern sollte, dann unterstellt die Kosten-Nutzen-Analyse, daß diese 50 Personen nun woanders sinnvoll tätig werden. Werden aber durch die Maßnahme, wie nicht abwegig ist zu erwarten, nur aus 4 Mio. Arbeitslose 4 Mio. plus 50, dann war es ein Denkfehler, die Beschäftigung der 50 Schiffer vor der Rationalisierungsmaßnahme mit Kosten in Verbindung zu bringen. Ihre Beschäftigung hat gar keine volkswirtschaftlichen Kosten hervorgerufen, da sie keiner alternativen Verwendung abgezogen waren. Das ist das Elementarste in der Ökonomie, daß Kosten immer Verzichte auf Alternativen sind. Wenn also die Beschäftigung der 50 Schiffer nur scheinbar, aber nicht in Wirklichkeit Kosten hervorgerufen hatte, dann darf die Einsparung ihrer Notwendigkeit auf Grund einer Rationalisierung auch nicht als Transportkostensenkung interpretiert werden.

Ganz besonders schwierig wird es, wenn durch solche Maßnahmen nicht nur die Kostensondern auch die Mengenseite betroffen ist, was in der Regel zutrifft, wird doch gerade Wasserstraßenausbau mit dem Argument empfohlen, Transportströme umzulenken. Dann müssen auch alle Alternativen gleichzeitig betrachtet und Wirkungen auf sie verfolgt werden. Nehmen wir an, ein Wasserstraßenausbau ziehe Verkehr von der Eisenbahn ab, weil deren Tarife unterboten werden könnten, und zwar nicht durch Kampfpreise, sondern wegen eines wirklichen Kostenvorteils. Wie stelle ich einen Kostenvorteil einer Alternative gegenüber einer anderen fest, die sich beide durch extrem hohe Fixkostenanteile und niedrige, möglicherweise sogar die Durchschnittskosten unterschreitende Grenzkosten auszeichnen? Hier nur die Tarife zu vergleichen, ist natürlich das Naivste, was man tun kann, denn Tarife sind kalkuliert, sie sind nie die Grenzkosten. Wenn Eisenbahn und Binnenschiffahrt beide hohe Fixkosten haben, nicht unter Überlast leiden, und einer zieht dem anderen Beschäftigung ab, dann kann der gesamtwirtschaftliche Kosteneinsparungseffekt auf Jahrzehnte hinaus nur gering sein. Es ist sehr kritisch zu prüfen, ob hier neue Investitionen, die ja nicht Grenzkosten, sondern Vollkosten sind, gerechtfertigt werden können.

Ich möchte klarstellen, daß ich mit diesen Ausführungen keineswegs Polemik gegen spezielle Projekte im Elbebereich bezwecke; hier muß jeder Meinungsaustausch auf exakten Berechnungen beruhen. Das Beispiel Gewässerausbau sollte mir nur helfen, bestimmte methodische Probleme, welche wirklich gravierend sind, plastisch darzustellen. Auf anderen Gebieten wiederholen sie sich. Wir denken in Projekten darüber nach, ob es in ländlichen Gebieten mit geringer Besiedlung sinnvoll sein kann, Abwasser, anstatt es mit hohen Kosten weitgehend perfekt zu klären und dann direkt in Wasserläufe zu injizieren, nicht besser etwas weniger perfekt zu klären, um es dann auf reichlich vorhandenen Flächen auszubringen. Die Abwasserkosten sind teilweise so hoch, daß z.B. auf der Insel Rügen Gewerbeansiedlungen und damit Arbeitsplätze deswegen unterbleiben. Hier könnte die Leistung der Landschaft in einer Entsorgungsfunktion bestehen.

Offenkundig besteht der monetäre Wert dieser Leistung in den eingesparten Kosten alternativer Klärverfahren. Aber wie hoch sind diese eingesparten Kosten? In vielen Regionen sind Fakten geschaffen und Kläranlagen teils überdimensioniert mit Geld, welches zeitweise vielleicht zu flüssig sprudelte, gebaut worden. Angenommen, man könnte diese Entscheidung voll rückgängig machen (was faktisch natürlich nicht geht), und eine Grünlandfläche würde Klärfunktionen übernehmen. Bei einer vernünftigen technischen Kläranlage hinreichender Leistung möge ein Kubikmeter 2 DM Klärkosten verursachen, bei der tatsächlich erstellten und viel zu teuren, aber 5 DM. Was setzen wir dann als Leistung an? Wenn wir die Leistung mit 5 DM pro Kubikmeter belohnen, dann belohnen wir sie dafür, daß sie eine unwirtschaftliche Alternative ersetzt. Ist es sinnvoll, so zu rechnen? Besser wäre eigentlich, den Wert der Leistung zu orientieren an der kostengünstigsten, vernünftigsten Alternative. Diese ist aber oft fiktiv und muß erst selbst berechnet werden. Wie gesagt, kommt natürlich hinzu, daß man von den fixen Kosten der bereits erstellten Kläranlagen nicht herunterkommt (man hätte sich vorher besser überlegen sollen, welchen Weg man wählt), und da im Klärwesen ähnlich wie im Schienen- und Binnengewässertransport die Fixkosten eine herausragende

Rolle spielen (die Kosten der Leitungen kommen hier auch hinzu), kann es sein, daß vernünftige Entscheidungen auf absehbare Zeit einfach blockiert sind.

Zusammenfassung

Alle meine dargelegten Aspekte sind nicht so zu verstehen, als würde ich sinnvolle Monetarisierungen im Bereich von Natur und Landschaft für aussichtslos halten oder Ihnen gar den Mut nehmen wollen, auf diesem Gebiet aktiv zu werden. Das Gegenteil ist der Fall. Um der Diskussion möglichst viel Raum zu überlassen, möchte ich nur ganz kurz zusammenfassen:

- 1. Die Monetarisierung hat ihre Wurzel in einem individualistischen mikorökonomischen Weltbild. Deshalb sind Monetarisierungen, welche sich möglichst direkt von individuellen Präferenzen ableiten, in vieler Hinsicht am aussichtsreichen, und es ist geradezu paradox, daß die Methoden zu ihrer Ermittlung (über die Herr Elsasser berichten wird) in der Öffentlichkeit so wenig geschätzt sind, obwohl sie, wenn ich nur das vorweg nehmen darf, viel besser sind als ihr Ruf.
- Oft sind wir gezwungen, die Leistung der Landschaft bei der Erstellung von Zwischenprodukten zu monetarisieren, und dann gelten alle diskutierten Einwände hinsichtlich ihrer Ferne von der Letztbewertung durch die Konsumenten.
- 3. Ein ethischer Rahmen, ein System moralischer Grenzen ist unabdinglich; es kann nicht jede Präferenz und Zahlungsbereitschaft akzeptiert werden. Dies ist jedoch keineswegs ein Spezifikum der Bewertung in Natur- und Landschaftsfragen, sondern gilt überall.
- 4. Die monetäre Bewertung ist immer marginal, versteht sich unter spezifischen Bedingungen und bezogen auf "kleine Mengen". Eine monetäre Bewertung von Wesen oder Substanzen schlechtin ("das Brot") gibt es nicht. Also gibt es auch keine monetäre Bewertung der gesamten Natur.
- 5. Marginale Bewertungen von irreversibel vernichtbaren Naturbestandteilen, insbesondere Arten, verbieten sich aus unterschiedlichen Gründen je nach Naturethik (biozentrisch oder anthropozentrisch), jedenfalls verbieten sie sich aus ethischen Erwägungen.
- Ein besonders fruchtbares Anwendungsfeld der Monetarisierung in der Natur ist die Ermittlung der Kosten, die wir auf uns nehmen müssen, um der Verpflichtungen von Nachhaltigkeit und Naturerhalt zu genügen.

Literaturauswahl

- Barde, J. P. & Pearce, D. W. (Eds.) (1991): Valuing the Environment. Six Case Studies. London: Earthscan Publications.
- Bateman, I. J. & Turner, R. K. (1993): Valuation of the Environment, Methods and Techniques: The Contingent Valuation. In: Turner, R. K. (Ed.): Sustainable Environmental Management: Principles and Practice. London. pp. 120 - 191
- Hampicke, U. (1991): Naturschutz-Ökonomie. Stuttgart: Eugen Ulmer.

- Hampicke, U. (1993): Möglichkeiten und Grenzen der monetären Bewertung der Natur. In:
 Schnabl, H. (Hg.): Ökointegrative Gesamtrechnung: Ansätze, Probleme, Prognosen. Berlin
- Hampicke, U., Horlitz, T., Kiemstedt, H., Tampe, K., Timp, D. & Walter, M. (1991): Kosten der Wertschätzung des Arten- und Biotopschutzes. Berlin: Erich Schmidt.
- Hanley, N. (1995): The Role of Environmental Valuation in Cost-Benefit Analysis. In: Willis, K. G. & Corkindale, J. T. (Eds.): Environmental Valuation. Oxon: Cab International.
- Hanley, N. & Spash, C. L. (1993): Cost-Benefit Analysis and the Environment. Aldershot: Edward Elgar.
- Johansson, P.-O. (1987): The Economic Theory and Measurement of Environmental Benefits.
 Cambridge: Cambridge University Press.
- Pearce, D. W. (1993): Economic Values and the Natural World. London: Earthscan Publications.
- Pearce, D. W. & Moran, D. (1994): The Economic Value of Biodiversity. London: Earthscan Publications.
- Pommerehne, W. (1987): Präferenzen für öffentliche Güter. Ansätze zu ihrer Erfassung. Tübingen: Mohr
- Pruckner, G. J. (1994): Die ökonomische Quantifizierung natürlicher Ressourcen. Eine Bewertung überbetrieblicher Leistungen der österreichischen Land- und Forstwirtschaft. Frankfurt, M.
- Weimann, J. (1996): Monetarisierungsverfahren aus der Sicht der ökonomischen Theorie. In: Linckh, G., Sprich, H.:. F., H. & Mohr, H. (Hg.): Nachhaltige Land- und Forstwirtschaft (Expertisen), Berlin u.a.: Springer.

Peter Elsasser

Die Contingent Valuation Method: Stand der Forschung, Anwendungsmöglichkeiten im Rahmen der (Elbe-) Ökologie und Grenzen der Methodik

Diskussionen um umweltverbessernde Maßnahmen werden häufig von Kostenargumenten dominiert. Während Informationen über volkswirtschaftliche Kosten umweltverbessernder Maßnahmen zum großen Teil aus Marktpreisen abgeleitet werden können und oft gut verfügbar sind, ist die Ermittlung des Nutzens solcher Maßnahmen bisweilen schwieriger: Viele Umweltleistungen zeigen Charakteristika öffentlicher Güter, für die keine Marktpreise existieren. Es stehen aber verschiedene Methoden bereit, mit denen auch hier marktpreisanaloge Nutzenschätzungen möglich sind.

Ich möchte Ihnen mit der Contingent Valuation Method (CVM) einen Kurzüberblick über die gebräuchlichste und gleichzeitig auch flexibelste unter denjenigen Methoden geben, welche zur volkswirtschaftlichen Bewertung des Nutzens von Umweltgütern mit Öffentlichkeitscharakter eingesetzt werden. Dazu wird nach einer allgemeinen Vorstellung der Methode erläutert, für welche Güter und Wertkategorien sie verwendet werden kann, wie konkrete Gestaltungsmöglichkeiten der Methode aussehen können, und welche ihrer möglichen Fehler derzeit besonders intensiv hinterfragt werden. Abschließend werden eine Reihe von Anwendungsbeispielen der Methode aufgelistet und einige Hinweise für einen möglichen Einsatz im Rahmen des Projektes Elbe-Ökologie gegeben.

Vorstellung der Methode

Unter dem Namen "Contingent Valuation Method" ("Methode der Bedingten Bewertung") werden eine Reihe von Ansätzen zusammengefaßt, welche die Zahlungsbereitschaft für Umweltgüter durch direkte Befragung der Nutzer erheben. Das Grundprinzip der Methode ist, den Befragten eine hypothetische Marktsituation für das zu bewertende Gut zu schildern und sie daraufhin nach ihrer maximalen Zahlungsbereitschaft für eine definierte Mengenänderung dieses Gutes unter den geschilderten Umständen zu fragen.

Wie in anderen Bereichen auch, hängt die Ergebnisqualität stark von der Sorgfalt ab, mit der eine solche Befragung konzipiert und durchgeführt wird. Im Rahmen der Befragung werden den Interviewpartnern zunächst die bewertungsrelevanten (quantitativen und qualitativen) Aspekte der Ausgangsausstattung mit dem (Umwelt-) Gut vor Augen geführt. Anschließend werden sie über die zu bewertende Änderung informiert (aus den hierzu gegebenen Informationen muß hervorgehen, welches Ausmaß die zu bewertende Änderung haben soll; wie sie begründet ist; welche Institution das Gut bereitstellt und unter welchen Voraussetzungen; schließlich, auf welche Weise, von welchen Gruppen und an wen Zahlungen zu leisten wären. Zusätzlich kann wichtig sein, Informationen über in Frage kommende Substitute bereitzustellen und die Befragten an ihre jeweiligen Budgetrestriktionen zu erinnern).

Darauf folgen eine oder mehrere Fragen, mit denen die maximale Zahlungsbereitschaft der Befragten für das so beschriebene Gut ergründet wird.

Die Anwendungszwecke einer solchen Methode sind vielfältig. Ihr "klassischer" Anwendungsbereich ist die Nutzen-Kosten-Analyse: Informationen über die Zahlungsbereitschaft für Umweltschutzmaßnahmen zeigen, wie stark diese Maßnahmen von den Gesellschaftsmitgliedern gewünscht werden, und ermöglichen damit eine Abwägung mit anderen in der Gesellschaft geäußerten Bedürfnissen. Sie können damit u.a. einen wesentlichen Beitrag zur Demokratisierung von (behördlichen) Entscheidungen leisten. Von Planern können solche Nutzeninformationen entsprechend als Entscheidungshilfen für die Frage eingesetzt werden, ob eine spezifische Maßnahme zur Umweltverbesserung überhaupt durchgeführt werden soll - etwa wenn über den Bedarf nach einer solchen Maßnahme generell nur unzureichende Informationen vorliegen, oder wenn im Rahmen einer Nutzen-Kosten-Analyse wesentliche Nutzen- (oder auch Kosten-) Elemente dieser Maßnahme durch Marktpreise nur ungenügend widergespiegelt werden, und allein auf Preisen basierende Nutzen-Kosten-Analysen folglich ein verzerrtes Bild liefern würden. Volkswirtschaftliche Nutzeninformationen können in einer ähnlichen Ausgangssituation auch zum Vergleich verschiedener Maßnahmen herangezogen werden - etwa wenn es darum geht, ein gegebenes Naturschutzbudget möglichst effizient auf verschiedene mögliche Maßnahmen zu verteilen. Aber auch abseits dieser Anwendungszwecke, die primär von der Wohlfahrtstheorie her motiviert sind, gibt es Bedarf nach einer monetären Bewertungen von Umweltgütern: so u.a. im Rahmen des Haftungsrechtes bei der Bemessung von Schadenersatzleistungen.

Was kann mit der CVM bewertet werden?

Grundsätzlich können mit der CVM alle diejenigen knappen Güter bewertet werden, für die ein Markt denkbar und beschreibbar ist. Im Umweltbereich ist der hauptsächliche Anwendungsbereich die Bewertung von Schutzleistungen (Naturschutz bzw. Arten- und Biotopschutz, Hochwasser- und Trinkwasserschutz, Klimaschutz, Boden- und Erosionsschutz usw.) sowie von Erholungsleistungen (Naherholung/Tourismus). Anwendungen der Methode liegen aber auch über andere Güter mit Öffentlichkeitscharakter vor, wie etwa die staatliche Gesundheitsvorsorge. Darüberhinaus können mit dem gleichen Ansatz auch Kosten von Umweltschäden bewertet werden, seien dies nun beispielsweise Schäden durch die Zerstörung von Biotopen oder Beeinträchtigungen des Wohlbefindens durch Verkehrslärm (z.B. WEINBERGER 1991).

Die Gründe dafür, warum Menschen die Leistungen von Ökosystemen wertschätzen, müssen keineswegs allein auf den direkten Ge- oder Verbrauch solcher Leistungen beschränkt sein: Auch nicht-konsumgebundene Nutzenkomponenten können zusätzlich oder sogar ausschließlich von Belang sein. Entsprechend werden in der Anwendung der CVM unterschiedliche Nutzenkategorien diskutiert und bisweilen separat bewertet: Als "Erlebniswert" ("use value") wird diejenige Nutzenkomponente bezeichnet, die auf Nutzung bzw. Erlebnis eines Gutes im engeren Sinne basiert. "Non use values" sind dagegen vom unmittelbaren Ge- oder Verbrauch des Gutes unabhängig. Sie werden bisweilen weiter unterteilt:

Dabei wird mit "Optionswert" derjenige Wert umschrieben, den ein Mensch dem Erhalt seiner Zugriffsmöglichkeiten auf ein Gut zumißt, auch wenn er es gegenwärtig nicht nutzt. "Existenzwert" wird derjenige Wert genannt, der - abseits eigener Nutzungsabsichten - durch das schiere Bewußtsein zustandekommt, daß ein Gut - z.B. eine bestimmte Tierart - überhaupt existiert; dies kann zugunsten der Nutzungsmöglichkeiten anderer Zeitgenossen motiviert sein, zugunsten späterer Generationen ("Vermächtniswert") oder um des Gutes selbst willen ("intrinsischer Wert") (vgl. dazu u.a. HAMPICKE in diesem Band, oder PEARCE et al. 1990). Die hier aufgezählten Nutzenkomponenten sind allerdings nicht immer klar voneinander zu trennen, da zwischen ihnen z.T. inhaltliche Überschneidungen bestehen.

Je nach dem, welche Umweltleistung konkret bewertet werden soll, können die erwähnten Nutzenkomponenten für die Bewertung jeweils unterschiedlich relevant sein (schematisch angedeutet in Tab.1). So dürfte die Bewertung der Erholungsleistung einer reizvollen Flußlandschaft durch ihre Besucher wesentlich durch "Erlebniswerte" geprägt sein. Die Naturschutzleistung eines solchen Flußgebietes bietet möglicherweise weiteren Menschen Nutzen, welche diese Landschaft nicht oder nur selten besuchen, denen deren Naturschutz aus den obengenannten Motiven heraus aber dennoch "etwas wert ist". Bei der Bewertung durch diese Menschen würden also "non use values" stärker in den Vordergrund treten. Die Spendenbereitschaft für Tropenwaldschutzinitiativen etwa zeigt, daß Zahlungsbereitschaften selbst für den Erhalt solcher Ökosysteme bestehen, welche ein großer Teil der Spendenden vermutlich kaum je direkt zu Gesicht bekommen wird.

Tabelle 1: Unterschiedliche Nutzenkomponenten und ihr Einfluß auf die Bewertung einiger Umweltleistungen (schematisch)

	Erholung	Trinkwasser- schutz	Hochwasser- schutz	Naturschutz
Erlebniswert	X	X	х	Х
Optionswert	Х	X	X	Х
Vermächtniswert	X	X	X	X
Existenzwert	x	x	X	Х

Gestaltungsmöglichkeiten der CVM

Wenden wir uns kurz der Frage zu, wie eine Bewertung mittels der CVM im einzelnen gestaltet werden könnte. Der CVM liegt (noch) kein einheitliches und geschlossenes Konzept zugrunde, das eine Fragebogenentwicklung "nach Kochbuch" gestatten würde - nach dem derzeitigen Forschungsstand ist sie vielmehr als ein methodischer Ansatz einzustufen, der für die jeweiligen Anwendungen in verschiedenartiger Weise konkretisiert werden muß. Entsprechend gibt es für Befragungen, die sich der CVM bedienen, im Detail eine Vielzahl von Gestaltungsmöglichkeiten (sh. dazu u.a. MITCHELL & CARSON 1990).

Grundsätzlich gibt es zwei Möglichkeiten, wie Menschen ihre Wertschätzung für ein bestimmtes Umweltgut ausdrücken können: Sie können entweder angeben, wieviel sie für dieses Umweltgut höchstens zu zahlen bereit sind, oder, wieviel sie mindestens als Entschädigung fordern würden, wenn sie auf dieses Gut verzichten müßten. Theoretisch wäre zu erwarten, daß die Unterschiede zwischen maximaler Zahlungsbereitschaft und minimaler Entschädigungsforderung (bei der Bewertung marginaler Gütermengen) vernachlässigbar sind. In diesem Fall würde sich anbieten, Schadenersatzleistungen etwa per Entschädigungsforderung zu beziffern, dagegen zur Bewertung umweltverbessernder Maßnahmen im Standardfall nach der Zahlungsbereitschaft zu fragen.

In empirischen Studien fand man jedoch deutliche Differenzen zwischen den beiden Maßen; Entschädigungsforderungen überstiegen Zahlungsbereitschaften z.T. erheblich (für eine Übersicht vgl. RÖMER 1991). Die Ursachen hierfür sind umstritten. Auch von erkenntnistheoretischer Warte aus kann nicht entschieden werden, welchem der beiden Bewertungsmaße jeweils der Vorzug zu geben ist (diesem Problem liegt eine Frage nach der Ausgangsverteilung der Verfügungsrechte über das zu bewertende Umweltgut zugrunde, welche nur normativ beantwortet werden kann; vgl. KEPPLER 1991). Deshalb hat sich als pragmatische Konvention etabliert, für die CVM generell die Zahlungsbereitschaft als Bewertungsmaß heranzuziehen - nicht zuletzt deswegen, weil diese in bisherigen Untersuchungen durchgehend zu "vorsichtigeren" Bewertungen führte als die Entschädigungsforderung.

Für die Form der Bewertungsfrage selbst hat man die Wahl zwischen zwei verschiedenartigen Ansätzen, nämlich entweder die maximale Zahlungsbereitschaft direkt über offene bzw. iterative Fragen zu ermitteln, oder aber eine Zahlungsbereitschaftsfunktion zu schätzen und sich hierfür der geschlossenen Frageform zu bedienen. (Bei dem letztgenannten Ansatz werden unterschiedliche Befragte mit jeweils einem aus einer Reihe verschiedener Bewertungsvorschläge konfrontiert und zu diesem Vorschlag lediglich gefragt, ob sie ihn akzeptieren würden oder nicht. Aus dem Prozentsatz zustimmender Antworten im gesamten Datensatz wird dann auf die Zahlungsbereitschaftsfunktion der befragten Population geschlossen). Für den "direkten" Ansatz vermittels offener Fragen scheint sich abzuzeichnen, daß Zahlungsbereitschaften generell unterschätzt werden, wenn sie durch einzelne Fragen ermittelt werden (LÖWENSTEIN 1994; ELSASSER 1996). Auktionsähnliche Bewertungsprozeduren (DAVIS 1963) wirken dieser Fehlerquelle zwar entgegen; sie sind aber vergleichsweise zeitaufwendig. Mischformen und Weiterentwicklungen dieses Ansatzes versuchen, solchen Problemen zu begegnen: U.a. werden "Bezahlungskarten" eingesetzt (das sind verschiedenartig gestaltete Listen oder Grafiken mit einer Reihe von plausiblen Bewertungsvorschlägen, eventuell auch mit Vergleichsbewertungen anderer Güter), welche den Befragten Hilfestellungen bei der Bezifferung ihrer maximalen Zahlungsbereitschaft bieten. Zur Vermeidung von Unterschätzungen bei der Verwendung offener Fragen werden die zunächst von den Befragten genannten Zahlungsbereitschaften durch Nachfragen abgesichert.

Da die hier genannten Probleme bei Verwendung des "indirekten" Ansatzes bzw. der geschlossenen Frageform in den Hintergrund treten, gilt dieser Ansatz als weniger manipulierbar (besonders auch gegenüber möglichem strategischen Antwortverhalten der Befragten; s.u.) und findet in der letzten Zeit zunehmend Befürworter (z.B. ARROW et al. 1993). Den-

noch hat auch dieser Ansatz spezifische Nachteile: So ist bei Verwendung der geschlossenen Frageform ein höherer Stichprobenumfang nötig, welcher das Verfahren verteuert und in methodischer Hinsicht Designvergleiche erschwert; zudem werden hier Annahmen über Verteilungsfunktionen nötig, welche empirisch schwierig zu belegen und intuitiv oft schlechter nachzuvollziehen sind.

Ein weiterer Gestaltungsspielraum besteht hinsichtlich der Frage, welches Zahlungsvehikel für die Bewertung heranzuziehen sei (d.h. auf welche Weise die gedachten Zahlungen
zu leisten wären). In Betracht kommen - je nach Kontext - direkte Zahlungen der Befragten
etwa in Form von Eintrittspreisen für ein Erholungsgebiet, aber auch Spenden und Beiträge,
Steuern, Finanzierung aus öffentlichen Budgets bei Einschränkung anderer öffentlicher Ausgaben (HAMPICKE 1991) oder hypothetische Reisekosten (DUFFIELD 1984). Als Konvention
hat sich herauskristallisiert, jeweils dasjenige Vehikel einzusetzen, das unter den gegebenen
Umständen den Befragten am plausibelsten erscheint und gleichzeitig eine möglichst individuelle Zurechenbarkeit der Zahlungen gewährleistet.

Hinsichtlich der Befragungsform stehen für die CVM alle diejenigen Möglichkeiten zur Verfügung, die in "gewöhnlichen" Befragungen auch genutzt werden, nämlich mündliche ("face-to-face"), telefonische und postalische Interviews. Allerdings nimmt die Eignung dieser Möglichkeiten in der genannten Reihenfolge für den Einsatz im Rahmen der CVM ab: Gerade für kompliziertere Bewertungsszenarien kann ein direkter Kontakt zwischen Interviewer und Befragten nötig sein; eine "face-to-face"-Befragung kann unabdingbar sein, wenn visuelle Hilfen verwendet werden sollen (etwa die oben genannten Bezahlungskarten oder Landkarten, aus denen die Befragten Lage und Ausdehnung eines zu bewertenden Gebietes entnehmen können). Zudem ist bei mündlichen Befragungen vorteilhaft, daß der direkte Kontakt zum Interviewer i.d.R. die Antwortbereitschaft der Befragten erhöht und Hilfestellungen erleichtert - dies kann gerade bei ungewohnten Bewertungen "preisloser" Güter wesentlich sein. Dennoch finden auch telefonische und postalische Interviews weithin Anwendung, nicht zuletzt, weil sie meist leichter zu organisieren und daher grundsätzlich weniger aufwendig sind.

Fehlerquellen der CVM

Der obenstehende Abschnitt hat verdeutlicht, daß für die CVM im Detail einige Gestaltungsspielräume bestehen. Die Bewertungsergebnisse können dadurch unter Umständen mitbeeinflußt werden. Dies fordert immer wieder spontane Kritik heraus: Oft wird bezweifelt, ob trotz dieser Spielräume zwischen geäußerten und tatsächlichen Zahlungsbereitschaften hinreichende Übereinstimmungen bestehen könnten; oder es wird vermutet, daß die Befragten Bewertungsergebnisse durch unwahre Antworten zu manipulieren versuchen würden (= Hypothese strategischen Verhaltens).

Die Strategiehypothese begleitet die CVM seit deren Anfängen. Entsprechend haben CVM-Praktiker immer wieder empirische Tests durchgeführt, um den möglichen Einfluß dieser Fehlerquelle auf ihre Bewertungsergebnisse zu prüfen und gegebenenfalls zu quantifizieren. Tatsächlich kann aus den vorliegenden Tests geschlossen werden, daß vorhandene

Strategieanreize von den Befragten auch wahrgenommen und genutzt werden. Gleichzeitig zeigte sich aber, daß der Einfluß solcher Strategieanreize auf Bewertungsergebnisse stets gemäßigt war. Die ursprüngliche Annahme, nach der strategisches Verhalten zu völlig unzutreffenden Bewertungsergebnissen führen würde (SAMUELSON 1954/OLSON 1965), war demnach nicht zu halten: Selbst Bewertungen bei starken Übertreibungsanreizen lagen regelmäßig in der gleichen Größenordnung wie solche bei Untertreibungsanreizen (vgl. die Übersicht bei ELSASSER 1996). Bei sorgfältigen Untersuchungsanlagen scheinen solche Fehler daher zumindest stark eingrenzbar zu sein.

In der derzeitigen Diskussion wird einer weiteren Fehlerquelle ein besonderer Stellenwert zugemessen, nämlich sogenannten Zuordnungsfehlern ("embedding effects"). Zuordnungsfehler lassen sich definieren als Fehlinterpretationen der Aggregationsebene, auf der Befragte ein Gut bewerten; sie werden dann vermutet, wenn die Zahlungsbereitschaft für ein Güterbündel gleich oder ähnlich ist wie diejenige für eines seiner Bestandteile (beispielsweise, wenn die Verbesserung der Wasserqualität in allen Seen einer Region annähernd gleich bewertet wird wie in einem einzelnen See dieser Region; vgl. KAHNEMAN 1986). Zum Teil handelt es sich bei solchen Beobachtungen nicht um Fehler der Methode - vielmehr sind sie auf plausible ökonomische Ursachen zurückzuführen, nämlich auf Substitutionseffekte zwischen den betrachteten Gütern bzw. auf sinkende Grenznutzen der einzelnen Güter. Insoweit es sich um tatsächliche Bewertungsfehler handelt, scheinen diese nach den bislang vorliegenden empirischen Tests tendenziell geringer zu sein als Fehler durch strategisches Verhalten - zumindest wenn Güter bewertet werden, die maßgeblich durch "Erlebniswerte" geprägt sind. Dagegen ist die Methodenentwicklung bei der Bewertung von "non use values" derzeit noch im Fluß, so daß Aussagen über deren Zuverlässigkeit unsicherer sind. Da gerade Naturschutzleistungen oft stark von "non use values" geprägt sein können, ist bei der Bewertung solcher Leistungen oder bei der Interpretation entsprechender Untersuchungen eine Prüfung auf mögliche Zuordnungsfehler besonders empfehlenswert.

Neben den genannten existieren eine Reihe zusätzlicher Fehlerquellen, welche indes nicht alle spezifisch für die CVM sind: Hierunter fallen Fehler durch unrealistische Bewertungsszenarien, inadäquate Befragungsdesigns, durch Verankerungsanreize oder durch die den Befragten gegebenen Rahmeninformationen; zudem können durch fehlerhafte Stichprobenziehung für die Befragung oder durch Antwortverweigerungen erhebliche Verzerrungen zustande kommen. Diese und weitere Fehlerquellen wurden inzwischen eingehend empirisch überprüft. Generell zeigte sich bei solchen Tests, daß Fehler zwar auftreten können, diese bei gewissenhaft konzipierten Studien aber soweit reduziert werden können, daß ihnen nur sekundäre Bedeutung zukommt (wenn sie sich nicht ohnehin weitgehend gegenseitig ausgleichen). Zudem stehen zur Kontrolle von CVM-Ergebnissen in einigen Fällen auch alternative Bewertungsmethoden zur Verfügung. Auch solche entsprechenden Vergleiche zeigten oft gute Übereinstimmungen zu Bewertungen auf Basis der CVM (vgl. ELSASSER 1996).

Die teilweise heftige Diskussion um Fehlerquellen der CVM basiert somit zu einem erheblichen Teil auf der Kritik von Studien, die sich inadäquater Befragungsdesigns bedienen und dadurch vermeidbare Fehler aufweisen, oder auf der Kritik von falschen Interpretationen

bzw. falschen Weiterverarbeitungen ursprünglich korrekter Bewertungsergebnisse. Zudem konzentriert sich ein weiterer Teil dieser Diskussion auf Fehler, welche nicht CVM-spezifisch sind, sondern im Zusammenhang mit der Ökonomie öffentlicher Güter allgemein auftreten. Und schließlich mangelt es z.T. auch an einer klaren Trennung von Methoden- und Normendiskussion: Von einigen Seiten werden Einwände vorgebracht, welche vordergründig gegen die CVM gerichtet sind, sich jedoch eher auf eine normative Ablehnung der wirtschaftstheoretischen Basis dieser Methode zurückführen lassen.

Dennoch hat die Fehlerdiskussion das Bewußtsein dafür geschärft, daß eine unkritische Rezeption von CVM-Ergebnissen im Einzelfall zu erheblichen Fehlschlüssen verleiten kann. Hält man sich dies bei der Einschätzung der CVM vor Augen und berücksichtigt, daß CVM-Ergebnisse i.d.R. keine "exakten" Maße der Zahlungsbereitschaft für Umweltgüter darstellen, sondern in erster Linie die Einschätzung von deren Größenordnung ermöglichen sollen (selbst im Rahmen formeller Nutzen-Kosten-Analysen reichen Größenordnungsvergleiche zwischen Nutzen und Kosten häufig völlig aus, um zu eindeutigen Entscheidungen zu gelangen), so erscheint diese Methode als eine sehr aussichtsreiche Entscheidungshilfe, um den Nutzen von Umweltschutzmaßnahmen ermitteln und politisch vertreten zu können.

Anwendungsbeispiele der Methode und Einsatzmöglichkeiten im Rahmen der Elbe-Ökologie

Anwendungen der CVM gibt es insbesondere aus dem angloamerikanischen und skandinavischen Raum in fast unübersehbarer Fülle; eine Bibliographie führte bereits 1994 über 1600 empirische wie theoretische Arbeiten an (CARSON et al. 1994; Untersuchungen speziell zum Arten- und Biotopschutz sind aufgelistet bei POLASKY et al. 1996). In Deutschland hat sich der Einsatz dieser Methode bislang zögerlicher entwickelt. Dennoch liegen auch hier inzwischen einige Ergebnisse vor, mit Schwerpunkten in den Bereichen Naturschutz und Landschaftspflege sowie Erholungsleistungen von Landschaften. Tabelle 2 bietet eine Übersicht über einige der in Deutschland entstandenen Studien. Die Tabelle zeigt, daß ein Einsatz der CVM auch unter den in Deutschland gegebenen Verhältnissen praktikabel erscheint, und liefert Hinweise auf die Größenordnungen der Zahlungsbereitschaften, welche hier für unterschiedliche Umweltleistungen in etwa zu erwarten sind.

Wie könnte nun etwa ein Einsatz im Rahmen der Elbe-Ökologie aussehen? Eine Steigerung der Umweltqualität entlang der Elbe ließe erwarten, daß sich das Angebot an sehr verschiedenartigen Umweltleistungen in diesem Gebiet verbessert - insbesondere hinsichtlich des Arten- und Biotopschutzes, aber auch hinsichtlich weiterer Leistungen, z.B. für die Wohnqualität der dort wohnenden Menschen. Eine hinreichend zuverlässige Bewertung dieser unterschiedlichen Leistungen wird sich nur über die Durchführung einer eigenen Studie gewinnen lassen. Für eine solche Studie erschiene es angezeigt, den Befragten zunächst das Gesamtprojekt sowie die hierdurch berührten Leistungen zu schildern und sie dieses Gesamtprojekt bewerten zu lassen - eine separate Bewertung der einzelnen Leistungen könnte zu Doppelzählungen führen und aufgrund des oben erwähnten Problems möglicher Substitutionseffekte fehleranfällig sein. Wie im gleichen Zusammenhang oben beschrieben,

können gerade bei der Bewertung von Naturschutzleistungen "non use values" relevant sein; diese könnten das Problem möglicher Zuordnungsfehler aufwerfen. Angesichts der noch nicht abgeschlossenen Methodenentwicklung in diesem Bereich erscheint es hier zielführender, eine plausible Marktsituation zu konstruieren, in der solche "non use values" gleichzeitig miterfaßt würden, als diese einzeln anzusprechen und zu bewerten. Zudem dürfte es zur Vermeidung von Zuordnungsfehlern wichtig sein, im Rahmen der Befragung die Grenzen des Projektgebietes klarzustellen und die Befragten an die Existenz weiterer Naturschutzprojekte außerhalb dieses Gebietes zu erinnern. Ergänzend können methodische Begleituntersuchungen eine wesentliche Hilfe sein, um derartige Probleme weiter einzugrenzen. Informationen über den Wert einzelner Leistungen bzw. einzelner Nutzenkomponenten können auch bei diesem Vorgehen abgeleitet werden, indem die Bewertung des Gesamtprojektes anschließend durch entsprechende weitere Bewertungsfragen disaggregiert wird. Dabei sollte jedoch auf die Bewertung sehr kleiner bzw. sekundärer Teilprojekte verzichtet werden - dies nicht allein aus Kostengründen, sondern auch, weil allzu spezifische Detailbewertungen von den Befragten möglicherweise nicht mehr akzeptiert werden und dann zu sehr ungenauen Ergebnissen führen können.

Angesichts begrenzter Forschungsbudgets ist eine eigene CVM-Untersuchung nicht immer finanzierbar. Um in einer solchen Situation nicht völlig auf monetäre Einschätzungen des Nutzens eines Projektes verzichten zu müssen, können Ergebnisse vergleichbarer Studien herangezogen und an die jeweiligen konkreten Gegebenheiten des in Frage stehenden Projektes adaptiert werden. Entsprechende Ansätze werden in der englischsprachigen Literatur (etwas irreleitend) als "benefit transfer" bzw. "benefit function transfer" bezeichnet. Sie gehen grundsätzlich von einer Analyse der Bestimmungsgründe für Zahlungsbereitschaften aus, welche in bereits vorliegenden Untersuchungen genannt wurden. Anschließend werden entsprechende Korrelationen dieser Zahlungsbereitschaften mit den Eigenschaften der in diesen Untersuchungen bewerteten Projekte bzw. Leistungen gesucht. Anhand vergleichbarer Eigenschaften wird schließlich der monetäre Nutzen des in Frage stehenden Projektes geschätzt. Die Zeitschrift "Water Resources Research" widmete vor einigen Jahren diesen Ansätzen eine ganze Ausgabe (Heft 3/1992); inzwischen sind eine Reihe weiterer Arbeiten zu diesem Thema erschienen (u.a. BATEMAN et al. 1996; LOOMIS et al. 1995; LOOMIS & WHITE 1996; O'DOHERTY 1996). Eine Anwendung derartiger Ansätze in Mitteleuropa - und konkret im Rahmen der Elbe-Ökologie - wird allerdings durch die Tatsache erschwert, daß hier bislang nur sehr wenige empirische Arbeiten zur Verfügung stehen, an die ein "benefit transfer" anknüpfen könnte. Dennoch liegt mit der Studie von HAMPICKE & SCHÄFER (1997) über den Wert der Isar-Auen (1997) auch hier bereits ein entsprechendes Anwendungsbeispiel vor, welches nicht zuletzt als methodische Leitlinie genutzt werden kann.

Schließlich stellt Schweppe-Kraft in diesem Band eine weitere pragmatische Möglichkeit zur näherungsweisen Abschätzung des monetären Nutzens einzelner Umweltschutzmaßnahmen vor, und zwar auf der Basis bereits bekannter Bewertungen von Ökosystemen, welche mit Hilfe von Experteneinschätzungen einzelnen Bestandteile dieser Ökosysteme zugerechnet werden. Auch wenn dieser Einfluß von Expertenurteilen den engeren Rahmen der hier zugrundeliegenden Bewertungstheorie sprengen mag (innerhalb dessen die monetäre Bewertung in erster Linie expertenunabhängige Informationen über die Präferenzen

der Bevölkerung liefern soll), so dürften die dadurch zur Verfügung gestellten Informationen doch zumindest einer Situation vorzuziehen sein, in welcher sonst überhaupt keine Hinweise auf die monetäre Bewertung von Umweltschutzmaßnahmen nutzbar wären.

Tabelle 2: Ergebnisse der Bewertung verschiedener Leistungen von Ökosystemen in Deutschland nach Contingent Valuation Method (individuelle Zahlungsbereitschaften)

Autor	Bewertete Leistung	Ergebnis
HAMPICKE et al.	Artenschutz	
(1991)	(Deutschland)	21-33 DM/Monat
HOLM-MÜLLER et al.	Verbesserung des Artenschutzes	
(1991)	(Deutschland)	16 DM/Monat
VON ALVENSLEBEN	Ankauf von 15% der Landesfläche zur	
&SCHLEYERBACH (1994)	Biotopvernetzung (Schleswig-Holstein)	16-25 DM/Monat
CORELL	Erhalt d. bäuerlichen Kulturlandschaft	
(1994)	(Hessen)	13 DM/Monat
JUNG	Schutz von Arten vor Bedrohung durch	
(1994)	landwirtschaftliche Produktion	100 DM/Jahr
	Erhaltung des Landschaftsbildes	56 DM/Jahr
	Verbesserung des Landschaftsbildes	78 DM/Jahr
	(Allgäu/Kraichgau)	
KÄMMERER	Landschaftspflegeprogramm	
(1994)	(Lahn-Dill-Bergland) [3 Varianten]	38-49 DM/Jahr
LÖWENSTEIN	Ferienerholung von Besuchern	
(1994)	(Südharz)	42-53 DM/Besuch*
LÖWENSTEIN	Lawinenschutz durch Wald	
(1995)	(Hinterstein/Allgäu)	81 DM/Jahr
LUTTMANN/SCHRÖDER	Ferienerholung von Besuchern	
(1995)	(NSG Lüneburger Heide)	21-24 DM/Besuch*
SCHÜSSELE	Ferienerholung von Waldbesuchern	000110
(1995)	(Hoher Meißner)	36 DM/Besuch*
ELSASSER	Ferienerholung von Waldbesuchern	04.00 DM/D
(1996)	(Naturpark Pfälzerwald)	24-32 DM/Besuch
	Tageserholung von Waldbesuchern	101 DM/Jahr
	(Naturpark Pfälzerwald)	114 DM/Jahr
] .	(Hamburger Stadtwälder)	

^{*}umgerechnet von DM/Tag auf DM/Besuch

Literatur

- Arrow, K.; Solow, R.; Portney, P.; Leamer, E.; Radner, R.; Schuman, H. (1993): Report of the National Oceanographic and Atmospheric Administration Panel on Contingent Valuation. Federal Register 58 Nr.10, S.4601-4614
- Bateman, I.J.; Lovett, A.A.; Brainard, J.S. (1996): Transferring Benefit Values: A GIS Approach.
 University College London: Paper presented at workshop "CVM: Academic Luxury or Practical Tool?" (7.-8.5.1996). 40 S.
- Carson, R.T.; Wright, J.; Alberini, A.; Carson, N.; Flores, N. (1994): A Bibliography of Contingent Valuation Studies and Papers. LaJolla (Kalifornien): Natural Resource Damage Assessment Inc.

- Corell, G. (1993): Der Wert der "Bäuerlichen Kulturlandschaft" aus der Sicht der Bevölkerung -Ergebnisse einer Befragung. Vortrag, 34. Jahrestagung der GEWISOLA vom 6.-8.10.1993 in Halle, S.1-11
- Davis R.K. (1963): The Value of Outdoor Recreation: An Economic Study of the Maine Woods.
 Harvard University (zit. n. Mitchell/Carson 1990): Ph.D. dissertation.
- Duffield, J. (1984): Travel Cost and Contingent Valuation: A Comparative Analysis. Advances in Applied Micro-Economics 3, S.67-87
- Elsasser, P. (1996): Der Erholungswert des Waldes. Monetäre Bewertung der Erholungsleistung ausgewählter Wälder in Deutschland. Frankfurt: Sauerländer (Schriften zur Forstökonomie Bd.11). 218+25 S.
- Hampicke, U. (1991): Naturschutz-Ökonomie. Stuttgart: Ulmer (UTB). 342 S.
- Hampicke, U., Schäfer, A. (1997): Forstliche, finanzmathematische und ökologische Bewertung des Auwalds Isarmündung. Berlin: Schriftenreiher des IÖW 117/97. 93 S.
- Hampicke, U.; Tampe, K.; Kiemstedt, H.; Horlitz, T.; Walters, M.; Timp, D. (1991): Kosten und Wertschätzung des Arten- und Biotopschutzes. Berlin: E. Schmidt (Berichte 3/91 des Umweltbundesamtes). 629 S.
- Holm-Müller, K.; Hansen, H.; Klockmann, M.; Luther, P. (1991): Die Nachfrage nach Umweltqualtität in der Bundesrepublik Deutschland.Berlin: E. Schmidt (Berichte 4/91 des Umweltbundesamtes). 228 S.
- Jung, M. (1994): Die monetäre Bewertung einer umweltgerechten Nutzung von Agrarlandschaften.
 35. Jahrestagung der GEWISOLA (Vortrag). 11 S.
- Kahnemann D. (1986): Comments on the Contingent Valuation Method. In: Cummings, R.G.;
 Brookshire, D.S.; Schulze, W.D. (1986): Valuing Environmental Goods. An Assessment of the Contingent Valuation Method. Totowa (NJ): Rowman & Allanheld, S.185-194
- Kämmerer, S. (1994): Die Contingent-Valuation-Methode zur monetären Bewertung von Umweltqualität. 35. Jahrestagung der GEWISOLA (Vortrag). 15 S.
- Keppler, J. (1991): Wieviel Geld für wieviel Umwelt? Entschädigungskonzepte und ihre normativen Grundlagen. Zeitschrift für Umweltpolitik und Umweltrecht 14 Nr.4, S.397-410
- Loomis, J.B.; Roach, B.; Ward, F.; Ready, R. (1995): Testing transferability of recreation demand models across regions: a study of corps of Engineers reservoirs. Water Resources Research 31 Nr.3, S.721-730
- Loomis, J.B.; White, D.S. (1996): Economic benefits of rare and endangered species: summary and meta-analysis. Ecological Economics 18 Nr.3, S.197- 206
- Löwenstein, W. (1994): Reisekostenmethode und Bedingte Bewertungsmethode als Instrumente zur monetären Bewertung der Erholungsfunktion des Waldes - Ein ökonomischer und ökonometrischer Vergleich. Frankfurt: Sauerländer's (Schriften zur Forstökonomie Bd.6). 206 S.
- Löwenstein, W. (1995): Die monetäre Bewertung der Schutzfunktion des Waldes vor Lawinen und Rutschungen in Hinterstein (Allgäu). In: BERGEN, V.; LÖWENSTEIN, W.; PFISTER, G.: Studien zur monetären Bewertung von externen Effekten der Forst- und Holzwirtschaft. Frankfurt: Sauerländer (Schriften zur Forstökonomie Bd.2). 2. Auflage.
- Luttmann, V.; Schröder, H. (1995): Monetäre Bewertung der Fernerholung im Naturschutzgebiet
 Lüneburger Heide. Frankfurt: Sauerländer's (Schriften zur Forstökonomie Bd.10). 108 S.
- Mitchell, R.C.; Carson, R.T. (1990): Using Surveys to Value Public Goods: The Contingent Valuation Method. Washington D.C.: Resources for the Future. 2.Aufl., 463 S.
- O'Dothery, R. (1996): Using Contingent Valuation to Enhance Public Participation in Local Planning. Regional Studies 30 Nr.7, S.667-678

- Olson, M. (1965): The Logic of Collective Action. Cambridge (MA): Harvard University Press.
- Pearce, D.W.; Markandya, A.; Barbier, E.B. (1990): Blueprint for a Green Economy. London: Earthscan Publications Ltd.
- Polasky, S.; Jaspin, M.; Pavich, S.; Szentandrasi, S.; Bergeron, N.; Berrens, R. (1996): Bibliography on the Conservation of Biological Diversity: Biological/Ecological, Economic, and Policy Issues. Oregon State University: http://www.orst.edu/dept/ag_resrc_econ/biodiv/biblio.html. 136 S.
- Römer, A.U. (1991): Der kontingente Bewertungsansatz: eine geeignete Methode zur Bewertung umweltverbessernder Maßnahmen? Zeitschrift für Umweltpolitik und Umweltrecht 14 Nr.4, S.411-456
- Samuelson, P.A. (1954): The Pure Theory of Public Expenditure. Rewiev of Economics and Statistics 37, S.387-389
- Schüssele, J. (1995): Bewertung der Erholungsfunktion des Waldes um den "Kneipp- und Luftkurort Ziegenhagen". Göttingen: FH Holzminden/FB Forstwirtschaft (Diplomarbeit). 71 S.
- von Alvensleben, R.; Schleyerbach, K. (1994): Präferenzen und Zahlungsbereitschaft der Bevölkerung für Naturschutz- und Landschaftspflegeleistungen der Landwirtschaft. Berichte über Landwirtschaft 72, S.524-532
- Weinberger, M. (1991): Zur Ermittlung der Kosten des Straßenverkehrslärms mit Hilfe von Zahlungsbereitschaftsanalysen. Zeitschrift für Verkehrswissenschaft 62, S.62-92

Burkhard Schweppe-Kraft

Monetäre Biotopwerte als Instrument der Projektbewertung

Eine Zerstörung oder Beeinträchtigung von Biotopen bzw. Tier- und Pflanzenlebensräumen durch Gebäude, Anlagen, Verkehrswege etc. aber auch durch intensive Land- und Forstwirtschaft, Freizeit und Erholung, Umbau und Nutzung unserer Gewässer ist aus ökonomischer Sicht, soweit dabei individuelle oder gesellschaftlich akzeptierte Naturschutzziele beeinträchtigt werden, ein negativer externer Effekt, der mit Wohlfahrtsverlusten verbunden ist.

Zur Messung der Wohlfahrtswirkungen externer Effekte wurden im Rahmen der neoklassisch orientierten Kosten-Nutzen-Analyse unterschiedliche Methoden entwickelt. Für den Bereich Arten- und Biotopschutz wird zunehmend die Methodik der direkten Umfrage (contingent valuation) verwendet, bei der Wohlfahrtszuwächse durch die empirisch ermittelte maximale Zahlungsbereitschaft (willingness to pay) und Wohlfahrtsverluste durch die minimale Entschädigungsforderung (willingness to accept) gemessen werden.

Die Verwendung der genannten neoklassischen Wohlfahrtsmaße stößt insbesondere dann auf Kritik, wenn Beeinträchtigungen der Natur schlecht prognostizierbare und möglicherweise schwerwiegende und irreversible Folgen haben können. Als Alternative wird die Festlegung sogenannter "safe minimum standards" vorgeschlagen, das sind Belastungsgrenzwerte bzw. minimale ökologische Ausstattungsstandards, die nicht unterschritten werden dürfen, unabhängig davon wie hoch die positiven wirtschaftlichen Effekte des zu beurteilenden Projektes sind.

Unabhängig von der ökonomischen Diskussion zur Bewertung von Schädigungen der Natur wurde in der Naturschutzgesetzgebung in Deutschland die sogenannte Eingriffsregelung eingeführt (§ 8 Bundesnaturschutzgesetz bzw. entsprechende Länderregelungen). Die Eingriffsregelung sieht vor, daß bei Veränderungen der Gestalt oder Nutzung von Grundflächen, die zu erheblichen Beeinträchtigungen der Leistungsfähigkeit des Naturhaushalts und des Landschaftsbildes 1) führen, der Projektbetreiber die Pflicht hat,

- vermeidbare Beinträchtigungen zu unterlassen und
- unvermeidbare Beeinträchtigungen auszugleichen.

Sind Beeinträchtigungen weder vermeidbar noch ausgleichbar, so darf ein Projekt nur zugelassen werden, wenn die Naturschutzbelange in der Abwägung mit den anderen Belangen im Range nachgehen. In diesem Falle können dem Projektträger nach Maßgabe der Ländergesetze sogenannte Ersatzmaßnahmen auferlegt werden, mit denen der Naturhaushalt zwar nicht gleichartig - wie bei Ausgleichsmaßnahmen - aber möglichst gleichwertig wiederhergestellt werden soll. Als letztes Instrument können innerhalb der Eingriffsregelung vom Verursacher alternativ oder subsidiär zu Naturalmaßnahmen auch

Das in der Eingriffsregelung verwendeten Begriffspaar "Leistungsfähigkeit des Naturhaushalts" und "Landschaftsbild" steht für die Gesamtheit der Schutzgüter des Naturschutzrechts, bestehend aus "Leistungsfähigkeit des Naturhaushalts", "Nutzungsfähigkeit der Naturgüter", "Pflanzen und Tierwelt" und "Vielfalt, Eigenart und Schönheit von Natur und Landschaft".

Ausgleichsgelder erhoben werden, die in der Regel ebenfalls für Naturschutzmaßnahmen zu verwenden sind (vgl. MARTICKE 1996).

Die Hauptzielrichtung der Eingriffsregelung, die Leistungsfähigkeit des Naturhaushalts (als Sammelbegriff für das gesamte Zielbündel des Naturschutzes) durch die Unterlassung von Beeinträchtigungen oder ihren naturalen Ausgleich bzw. Ersatz zu erhalten, unabhängig davon, wie hoch die jeweiligen positiven und negativen Wohlfahrtseffekte des Projektes sind, ähnelt dem Konzept des "safe-minimum standard".

Konzepte zur ökonomischen Bewertung von Biotopen

Im Rahmen der genannten Eingriffsregelung versuchte der Autor ökonomisch fundierte Ansätze zur monetären Bewertung von Biotopen zu entwickeln, mit denen die verschiedenen bei der Umsetzung der Eingriffsregelung nötigen Entscheidungen (Bestimmung von Ausgleichs- und Ersatzmaßnahmen, Abwägung, Höhe der Ausgleichsgelder) methodisch unterstützt werden können (SCHWEPPE-KRAFT 1997).

Es sei im folgenden dargestellt, wie sich die insgesamt drei entwickelten Ansätze in die ökonomische Diskussion um die Bewertung von Naturbeeinträchtigungen einordnen lassen, welche Probleme bei der Operationalisierung zu lösen waren und welche Fragen sich aus der Analyse der Ergebnisse ergeben. Bewertungsgegenstand sind bei allen drei Ansätzen sogenannte Biotoptypen. Hierbei wurde an die landschaftspflegerische Praxis angeknüpft, die bei der Prognose und Beurteilung von Beeinträchtigungen und der Ableitung von Ausgleichs- und Ersatzmaßnahmen ebenfalls in der Regel beim jeweils beeinträchtigten Biotoptyp anknüpft.

Der Biotoptyp (z.B. reife Hecke mit Überhältern, Kalkmagerrasen, schnell fließender naturnaher Bach, Kiefernforst u.ä.) beschreibt für einen bestimmten Standort mehr oder weniger genau

- die Art der Vegetation,
- die natürlichen Standortverhältnisse sowie
- ausgewählte Strukturparameter (z.B. Alter, Natürlichkeit).

Diese drei Beschreibungsmerkmale sind Indikatoren bzw. wesentliche Bedingungen auch für andere Eigenschaften des Biotops, z.B. seine Bedeutung als Tierlebensraum, die potentielle Kimafunktion, seine Funktion im bodennahen Wasserhaushalt, seine potentielle Funktion als Landschaftsbildelement. Da Biotoptypen stark generalisierte Einheiten sind, erlauben sie in der Regel nur eine Grundbewertung, die abhängig von der speziellen Ausprägung und der Einbindung in den funktionellen Raumzusammenhang (Topographie, Wasserhaushalt, Klimafunktion, Tiervorkommen mit Teillebensraumansprüchen, ästhetische Funktion im Landschaftsraum) konkretisiert werden muß (vgl. MÜLLER-PFANNENSTIEL et al. 1995). Dieser Konkretisierungsbedarf gilt sowohl für die landschaftspflegerische Praxis der Bestimmung von Eingriff und Ausgleich als auch - in ähnlicher Weise - bei der Bestimmung von monetären Werten für Biotope.

Die drei entwickelten Modelle zur monetären Bewertung von Biotopen wurden entsprechend ihres jeweiligen ökonomischen Hintergrundes "Fonds-Modell", "Investitionsmodell" und "Modell biotoptypenspezifische Entschädigungsforderung" genannt.

Fonds-Modell

Das "Fonds-Modell" geht von dem Ziel aus, das in der Praxis von Eingriff, Ausgleich und Ersatz auftretende Problem der Biotopentwicklungszeiten zu lösen (vgl. RAT VON SACH-VERSTÄNDIGEN FÜR UMWELTFRAGEN 1994: 266). Neu hergestellte junge Biotope haben zunächst eine andere Artenausstattung als die beeinträchtigten. Erst mit zunehmendem Alter nähert sich diese Ausstattung - bei ausreichender Vernetzung mit entsprechenden Artenbeständen - der Ausstattung der beeinträchtigten Biotope an. Es läßt sich zeigen, daß bei einer andauernden Folge von Eingriffen aufgrund der zeitlichen Verzögerung der Bestand an ausgereiften bzw. alten Biotopen, die für die Erhaltung von Pflanzen und Tieren besonders bedeutsam sind, nachhaltig zurück geht, auch wenn die Eingriffe jeweils im Verhältnis 1:1 durch naturale Wiederherstellungsmaßnahmen ausgeglichen werden (vgl. SCHWEPPE-KRAFT 1992 sowie Abb. 1).

Der entwicklungszeitbedingte Rückgang reifer Biotope kann am schnellsten durch (einmalige) vorsorgende Biotopneuschaffungen kompensiert werden, die vom Staat vorzufinanzieren wären. Die Finanzierungskosten können entsprechend dem Verursacherprinzip von den jeweiligen (späteren) Eingriffs-Verursachern getragen werden. Dazu ist von allen Verursachern zusätzlich zum 1:1 - Ausgleich ein entwicklungszeitabhängiger Aufschlag auf die 1:1 - Wiederherstellungskosten an einen Ausgleichsfonds zu zahlen, aus dem die Kapitalkosten (Zinsen) der vorsorgenden Biotopneuschaffungen finanziert werden. Bei pro Jahr gleichbleibend hohen Eingriffen - was grob dem derzeitigen Wachstumsmuster versiegelter Flächen entspricht (vgl. Abb. 2) - berechnet sich der zur Finanzierung nötige Aufschlag aus dem Zinssatz einer langfristigen Kreditaufnahme multipliziert mit der Entwicklungszeit des jeweiligen Biotops (vgl. SCHWEPPE-KRAFT 1992 sowie Abb. 3).

Die 1:1 - Wiederherstellungskosten und der entwicklungszeitabhängige Aufschlag stellen den monetären Gegenwert der Maßnahmen dar, die notwendig sind, um beandauernden Eingriffen möglicht schnell einen gleichbleibenden Bestand an reifen Biotopen zu gewährleisten. Naturale Aufschläge auf den 1:1 - Ausgleich - das heißt eine laufende Wiederherstellung über die ursprünglich beeinträchtigten Leistungen hinaus - würden zwar irgendwann auch einmal dazu führen, daß der ursprüngliche Bestand reifer Biotope wieder erreicht würde, aber je nach Höhe der Aufschläge grundsätzlich später als bei der genannten Strategie vorsorgender Biotopneuschaffungen.

Das skizzierte "Fonds-Modell" zur Finanzierung vorsorgender Biotopneuschaffungen ist ein reines Finanzierungsmodell. Es geht von dem ökologischen Ziel einer möglichst schnellen Erreichung und Stabilisierung des derzeitigen Standes reifer Biotope aus und fragt nach dem Finanzierungsbeitrag, den jeder einzelne Verursacher zur Verwirklichung dieses Ziels zahlen muß. Eingeordnet in die ökonomische Diskussion entspricht der Ansatz am ehesten dem Konzept des "safe-minimum-standard". Dabei wird die derzeitige Ausstattung mit reifen

Biotopen als unerläßlich angesehen, um einen ausreichenden Stand an biologischer Vielfalt langfristig zu sichern. ²⁾

Investitionsmodell

Die beiden anderen zur Monetarisierung von Biotopen entwickelten Verfahren basieren auf neoklassisch orientierten Ansätzen. Das "Investitionsmodell" ist ein um Entwicklungszeiten erweiteter Wiederherstellungskostenansatz. Wiederherstellungskosten sind nur dann ein geeignetes Maß zur Messung der Wohlfahrt im Sinne der Kosten-Nutzen-Analyse, wenn die Herstellungskosten den Grenznutzen entsprechen. Dies wäre nur dann der Fall, wenn der Staat den Umfang der Zerstörung und Wiederherstellung von Biotopen so regeln würden, daß ein pareto-optimales "Angebot" an Biotopen bzw. Naturschutzgütern gegeben wäre. Aus politisch-ökonomischen Überlegungen (vgl. BLÖCHLIGER 1992: 59 ff) ist eher zu erwarten, daß das Angebot an Naturschutzgütern unter dem Optimum liegt. Wiederherstellungskosten könnten dann zumindest eine untere Schätzgrenze für den tatsächlichen Wert von Biotopen darstellen.

Zumindest bietet der Herstellungskostenansatz die Möglichkeit, den staatlichen Entscheidungsträgern die Rationalität (bzw. Irrationalität) des eigenen Handelns vor Augen zu führen. Da der Staat selber in anderen Handlungsbereichen des Naturschutzes Biotopentwicklungsmaßnahmen finanziert, sollte er auch davon ausgehen, daß der Wert der entwickelten Biotope wenigstens den Herstellungskosten entspricht.

Ein weiteres Problem der Anwendung des Wiederherstellungskostenansatzes liegt in den besonderen Eigenschaften begründet, die Biotope im Vergleich zu anderen Gütern bezüglich Herstellungszeitraum und Nutzenentwicklung aufweisen. Kulturbiotope wie Heiden, Magerrasen, Feuchtgrünland, Streuwiesen, Hecken etc. bedürfen nach Herstellung der abiotischen und biotischen Ausgangsbedingungen einer dauernden Pflege bzw. Bewirtschaftung. Außerdem erreichen alle Biotope ihren vollen Naturschutzeffekt - wie oben dargestellt - erst nach einer von Typ zu Typ unterschiedlichen Alterungsphase bzw. "Reifezeit". Während dieser Phase wächst der Nutzen für den Naturschutz mehr oder weniger kontinuierlich an.

Die Herstellung eines Biotops ist bei diesen Eigenschaften interpretierbar als eine Investition mit einer mehr oder weniger langjährigen Phase in der Investitions- bzw. Erhaltungskosten anfallen und einem bis zum Reifezeitpunkt nach und nach steigenden und danach weitgehend stabilen Ertrag. Entspricht das staatlich regulierte Angebot an Biotopen einschließlich der durchgeführten Biotopentwicklungen - wie oben angemerkt - bestenfalls einem pareto-optimalen Angebot, so heißt das, daß die Rentabilität einer Investition in Biotope auch mindestens der üblichen Rentabilität entsprechen muß (vgl. SCHWEPPE-KRAFT 1996).

² Eine einmalige Unterschreitung des "safe-minimum-standard" von der Dauer der (ersten) Biotopentwicklungszeit muß dabei ökologisch akzeptabel sein, denn so lange würde es nach Einführung des "Fonds-Modells" dauern, bis der ursprüngliche Bestand an reifen Biotopen durch vorsorgende Biotopneuschaffungen wieder erreicht und danach dauerhaft gesichert ist.

Der mit der üblichen Kapitalverzinsung abgezinste Barwert aller Kosten und Nutzen einer Biotopherstellung ist in einer pareto-optimalen Situation gleich 0. Nimmt man zusätzlich einen bestimmten Verlauf der Nutzen eines Biotops bis zum Reifezeitpunkt an - z.B. einen einfachen linearen Verlauf -, so kann man den Barwert eines reifen Biotops mit den gängigen Methoden der Investitionsrechnung ermitteln, allein auf Grundlage der Kosten und des Nutzenverlaufs ohne vorab die absolute Höhe der jährlichen Nutzen explizit schätzen zu müssen. Die Berechnungsmethode des Investitionsmodells ist deshalb auch als implizite Methode der Nutzenmessung interpretierbar, basierend auf der Annahme, daß Biotopentwicklungen eine übliche Rentabilität aufweisen (vgl. Abb. 4).

Modell biotoptypenspezifische Entschädigungsforderung

Das dritte, ebenfalls neoklassisch orientierte Modell zur Biotopbewertung basiert auf der Methodik der expliziten Nutzenmessung durch Umfragen (contingent valuation). Eine direkte Befragung nach der Zahlungsbereitschaft zum Erhalt konkreter Biotope dürfte methodisch an der mangelnden Kenntnis der Befragten über die Anzahl und den relativen Wert der insgesamt schutzwürdigen Biotope scheitern (vgl. Schweppe-Kraft/Habeck/Schmitz 1989: 22). Es wurde deshalb zur Weiterentwicklung dieses Ansatzes ein zweistufiges Verfahren verwendet, bei dem Zahlungsbereitschaften für das allgemein definierte Gut "Naturschutz" mit Hilfe naturschutzfachlicher Bewertungsverfahren auf das Teilziel der Erhaltung eines konkreten Biotoptyps umgerechnet wurden (vgl. Abb. 5).

Als Basis zur Erfassung der allgemeinen Zahlungsbereitschaft für Naturschutz diente das Ergebnis der bundesweiten Umfrage von HAMPICKE et al. (1991) zur Zahlungsbereitschaft ("willingness to pay") für ein Arten- und Biotopschutzprogramm für Deutschland (alte Bundesländer).

Dieses Programm wurde mit Hilfe von kardinalen Biotopbewertungsverfahren, die in der landschaftspflegerischen Praxis verwendet werden, in Biotopwertpunkte umgerechnet. Dabei wurde durch Abzinsung der Werte zukünftiger Perioden berücksichtigt, daß der naturschutzfachliche Effekt des Programmes sich erst allmählich voll entwickelt, wogegen ein Eingriff einen plötzlichen Werteverlust bedeutet. Weiterhin wurde davon ausgegangen, daß bei einem umfangreichen Naturschutzprogramm der Effekt sinkender Grenznutzen eintritt; d.h. daß die "ersten" Maßnahmen innerhalb des Naturschutzprogrammes für dringlicher gehalten und mit einer höheren Zahlungsbereitschaft pro Biotopwertpunkt verbunden sind als der Durchschnitt des Programms. Für die eigentlich zu messende Entschädigungsforderung gegen eine (marginale) Biotopzerstörung wurde angenommen, daß sie genauso groß ist, wie die Zahlungsbereitschaft für die "ersten" Maßnahmen innerhalb des Programms.

Zur groben Abschätzung des Effektes sinkender Grenznutzen wurde angenommen, daß

- die Grenznutzenfunktion linear ist,
- das Programm als optimales Programm angesehen wird, bei dem die Grenznutzen den Grenzkosten entsprechen, und
- die Grenzkosten in der Mitte liegen zwischen den theoretischen Extremfällen:
 - Grenznutzen = Durchschnittsnutzen = Grenzkosten = Durchschnittskosten und
 - Grenznutzen = 0 (vgl. Abb. 6).

Unter den genannten Annahmen ergibt sich eine Entschädigungsforderung gegen eine Biotopzerstörung, die 1,5-mal so hoch ist wie die durchschnittliche Zahlungsbereitschaft für eine Biotopzerbesserung. Der Effekt sich erst allmählich entwickelnder Biotopzerbesserungen geht bei den Entwicklungs- und Verzinsungsannahmen, die den in Tab. 2 dargestellten Ergebnissen zugrunde liegen, zusätzlich mit dem Faktor 2,3 ein. Beide Effekte zusammen führen dazu, daß die Tab. 2 zugrunde liegenden Entschädigungsforderungen gegen den Verlust eines Biotopzertpunktes ca. 3,5-mal so groß sind wie die durchschnittliche Zahlungsbereitschaft pro zusätzlichem Biotopzertpunkt eines voll entwickelten Biotops im Rahmen des Naturschutzprogrammes.

Operationalisierung

Bei der Operationalisierung der beiden oben dargestellten erweiterten Wiederherstellungs-kostenansätze ("Fonds-" und "Investitionsmodell") ist zunächst die Tatsache zu berücksichtigen, daß man durch die Zerstörung eines Biotops - auch ungeachtet der Entwicklungszeiten - mehr verliert, als man durch die Entwicklung eines gleich großen Biotops hinzugewinnt. Die Flächen auf denen Wiederherstellungsmaßnahmen durchgeführt werden, haben nämlich fast alle bereits einen naturschutzfachlichen Ausgangswert, so daß eine flächenmäßige 1:1 - Wiederherstellung auch nach Ende der Entwicklungszeit regelmäßig den Schaden nicht vollständig kompensieren kann.

Die Ausgangswerte wurden dadurch berücksichtigt, daß als Berechnungsbasis nicht eine flächenmäßige sondern eine wertmäßige 1:1 - Wiederherstellung zugrunde gelegt wurde. Dazu wurden kardinale naturschutzfachliche Wertzahlen für Ausgangs- und Zielbiotope bestimmt und die gleichwertige 1:1 - Wiederherstellung analog zu landschaftspflegerischen Ansätzen (vgl. ADAM/NOHL/VALENTIN 1987: 298) definiert als:

Fläche des Fläche der Ausbeeinträchtigten Wertminderung = gleichs- und Er- Werterhöhung satzmaßnahmen

Ein weiteres methodisches Problem stellen Biotope dar, die zwar Träger von Funktionen des Naturhaushalts sind, deren gleichartige Wiederherstellung aber naturschutzfachlich wenig sinnvoll ist, wie z.B. bei Acker, Intensivgrünland und Forsten. In solchen Fällen wurde der Kostenberechnung die wie oben definierte gleichwertige Herstellung eines ähnlichen aber höherwertigen Biotops zugrundegelegt. In den genannten Fällen war dies z.B. Extensivgrünland und naturnaher Wald.

Weiterhin besteht bei Wiederherstellungskostenansätzen das grundsätzliche Problem, daß es zur Herstellung eines bestimmten Zielbiotops

- unterschiedliche Ausgangssituationen,
- unterschiedliche Maßnahmenbündel und
- unterschiedliche Formen der Flächensicherung gibt, die zusammengenommen dazu führen, daß ein und derselbe Biotoptyp zu unterschiedlichen

- Preisen.
- Entwicklungszeiten,
- Risiken bezüglich des Erfolgs der Herstellung und
- Aufschlägen aufgrund des naturschutzfachlichen Werts der Ausgangssituation wiederhergestellt werden kann (vgl. Tab. 1).

Da man aufgrund natürlicher, rechtlicher und sozialer Randbedingungen nicht davon ausgehen kann, daß von diesen Alternativen immer die billigste bzw. effizienteste ausgewählt werden kann, müssen die verschiedenen möglichen Alternativen untereinander gewichtet werden. Die Gewichtungsfaktoren wurden so gesetzt, daß die teuren Varianten in der Regel mit nicht mehr als 30% eingehen. Eine statistisch abgesicherte empirische Grundlage hierzu gibt es zur Zeit nicht.

Die beim "Fonds-" und "Investitionsmodell" verwendeten Herstellungskosten basieren im wesentlichen auf den Angaben von FEICKERT et al. (1993), HAMPICKE et al. (1991), MÜLLER-PFANNENSTIEL et al. (1995), SCHERFOSE/FRANK (1994) und PLANKL (1995). Die verwendeten prozentualen Aufschläge für Herstellungsrisiken nach MÜLLER-PFANNENSTIEL et al. (1995) sind als gutachterliche Einschätzung zu bewerten. Aufgrund der geringen Erfolgskontrollen bei Ausgleichs- und Ersatzmaßnahmen liegen hier noch keine quantitativen empirischen Ergebnisse vor.

Dies gilt im Prinzip genauso für die Entwicklungszeiten, wenn hier auch auf eine größere Anzahl von Quellen zurückgegriffen werden kann (u.a. KAULE/SCHOBER 1985, RIECKEN 1992, LUDWIG/MEINIG 1991, FEICKERT et al. 1993). Die verwendeten Entwicklungszeiten basieren wegen des relativ hohen Detaillierungsgrades im wesentlichen auf den Angaben von FEICKERT et al. (1993). Die für alle Modelle benötigten Biotopwerte sind Mittelwerte aus den Angaben von LUDWIG/MEINIG (1991) und der Ausgleichsabgabenverordnung von Hessen (AAV-Hessen 1995). In den Spalten 11 - 13 der Tab. 2 wurden zusätzlich noch transfomierte Biotopwerte verwendet, auf deren Bedeutung noch eingegangen wird.

Weiterhin ist darauf hinzuweisen, daß bei allen langfristigen ökonomischen Berechnungen die Wahl des Zinssatzes entscheidend für das Ergebnis ist. Beim "Fonds-Modell" leitet sich der Zins aus der Finanzierungsfunktion ab und ist deshalb ohne größere methodische Probleme in Höhe der Kosten einer langfristigen staatlichen Kreditaufnahme festzusetzen. Bei den in Tab. 2 dargestellten Ergebnissen wurde von einem Zins von 6% ausgegangen.

Bei den neoklassischen Ansätzen "Investitionsmodell" und "Modell biotoptypenspezifische Entschädigungsforderung" ist als Zinssatz dagegen die marginale Zeitpräferenzrate bzw. das Grenzprodukt des Kapitals zu verwenden. Man geht in der Regel davon aus, daß hierfür Größen unterhalb der Kapitalmarktzinsen anzusetzen sind (vgl. HAMPICKE et al. 1991: 65 f). Den in Tab. 2 dargestellten Ergebnissen liegt eine Abzinsungsrate von 4% zugrunde. Da die beiden letztgenannten Modelle vom jährlichen Nutzen eines Biotopes ausgehen, sind anders als beim "Fonds-Modell" auch Annahmen über die zeitliche Entwicklung des Nutzens nötig. Da quantitativ verwertbare Aussagen zum ökologischen Wert unterschiedlicher Biotopentwicklungsstadien zur Zeit nicht vorliegen, wurden Modellrechnungen mit unterschiedlichen

Entwicklungsmustern durchgeführt. Die Ergebnisse der Tab. 2 gelten für einen linearen Entwicklungsverlauf bis zum Erreichen des Reifezeitpunktes.

Auf die zur Operationalisierung des "Modells biotoptypenspezifische Entschädigungsforderung" weiterhin nötige Annahme über den Verlauf der Nachfragefunktion nach "Natur" wurde bereits oben hingewiesen.

Ergebnisse

Tab. 2 stellt ausgewählte Ergebnisse der drei Berechnungsmodelle für verschiedene relativ grob definierte Biotoptypen dar. Auf die jeweiligen Annahmen über

- Verzinsung, (beim "Fonds-Modell" 6%, ansonsten 4%),
- Nutzenentwicklung (beim "Fonds-Modell" nicht benötigt, ansonsten linear),
- Nachfragefunktion (nur beim "Modell biotoptypenspezifische Entschädigungsforderung" relevant) und
- Maßnahmenmix (nur bei "Fonds-" und "Investitonsmodell" relevant) wurde bereits oben hingewiesen.

Die berechneten Werte gelten alle für eine vollständige Biotopzerstörung vergleichbar etwa der Asphaltierung eines Biotops. Wird das Biotop bzw. damit verknüpfte Zielfunktionen (Pflanzen und Tiere, Klima, Grundwasserneubildung, Wasserretention, Ästhetik etc.) durch Umwandlung, Änderung des Wasserhaushalts, Emissionen, Zerschneidungen oder Störeffekte nicht zerstört sondern nur beeinträchtigt, so kann man dies beispielsweise durch prozentuale Minderungsfaktoren ausdrücken (vgl. ADAM/NOHL/VALENTIN 1987) mit deren Hilfe man vom monetären Wert des Vollverlustes auf den monetären Wert der Beeinträchtigung umrechnet. Alternativ kann man auch den monetären Wert der verbleibenden Biotope - unter Berücksichtigung von Entwicklungszeiten mit Hilfe der jeweiligen Verzinsungsmethoden - vom monetären Wert des Vollverlustes abziehen ³⁾.

Die Spalten 6 und 9 zeigen die Ergebnisse für das "Fonds-" und das "Investitionsmodell". Die Ergebnisse sind im großen und ganzen vergleichbar. Der höchste Wert ergibt sich für ein Hochmoor mit 967.80 DM/m" beim "Fonds-Modell" und 584.05 DM/m" beim "Investitionsmodell". Der geringste für einen Acker mit 3.47 bzw. 1.88 DM/m". Eine Berechnung wurde für insgesamt 51 ⁴⁾ Biotoptypen durchgeführt, die nahezu 100% der nicht versiegelten Flächen ausmachen. Der in der letzten Zeile angegebene, mit der relativen Flächenausdehnung gewichtete Durchschnitt über alle 51 Biotoptypen beträgt 38.46 bzw. 22.80 DM/m". Die

Die monetäre Bewertung von Biotopbeeinträchtigungen mit Minderungsfaktoren bezogen auf den 100% Verlust oder durch Gegenrechnen der monetären Werte der verbleibenden Biotope wird bei der Anwendung des "Fonds-" und des "Investitionsmodells" in der Regel zu unterschiedlichen Ergebnissen führen. Der Grund hierfür liegt in der Tatsache, daß kardinale naturschutzfachliche Biotopwerte und das Ziel der Erhaltung aller Funktionen des Naturhaushalts zwei im Prinzip nicht miteinander kompatible Annahmen bzw. Ziele sind.

Von den 51 berechneten Biotoptypen wurde in Tab. 2 aus Platzgründen nur eine (möglichst repräsentative) Auswahl dargestellt.

für Deutschland (alte Bundesländer) geschätzte relative Flächenausdehnung, bezogen auf die nicht versiegelte Fläche, gibt Spalte 1 wieder.

Neben den Ergebnissen der drei Berechnungsmodelle enthält Tab. 2 auch einige hochaggregierte Informationen über die jeweiligen Grundlagendaten und deren Bandbreite. In die Berechnung des auch in Tab. 1 dargestellten Beispiels Mager- und Halbtrockenrasen gingen beispielsweise Varianten mit Entwicklungszeiten zwischen 10 und 50 Jahren ein (vgl. Spalte 3), wobei die kurzen Entwicklungszeiten für Biotopverpflanzungen und die Regenerierung verbuschter Magerrasen gelten. Die durchschnittlichen Kosten der wertmäßigen 1:1 - Wiederherstellung betrugen 11.23 DM/m" (Spalte 5), die verbleibende Differenz zum berechneten Wert nach "Fonds-" und "Investitionsmodell" (41.85 DM/m" bzw. 23.84 DM/m") machen die in Spalte 4 genannten Risikoaufschlägen von 0 - 40% und die Berücksichtigung der Entwicklungszeiten aus. Spalte 7 macht deutlich, wie stark die monetären Werte, die auf Grundlage der einzelnen Herstellungsvarianten nach dem "Fonds-Modell" berechnet wurden, um den in Spalte 6 angegebenen gewichteten Durchschnitt der Varianten schwanken. Im Falle von Mager- und Halbtrockenrasen beträgt die geringste Variante 42% und die höchste 213% des berechneten Durchschnittswertes. Insbesondere bei Wäldern ergeben sich noch wesentlich größere Differenzen, was die Notwendigkeit einer empirischen Erhärtung der Gewichtungen der Herstellungsvarianten unterstreicht.

Wie stark weiterhin die naturschutzfachlichen Biotopwerte die Ergebnisse beeinflussen, zeigt ein Vergleich der Spalten 2, 11, 6 und 12. Bei den in Spalte 6 dargestellten Ergebnissen des "Fonds-Modells" wurden der landschaftspflegerischen Praxis entsprechende Biotopwerte zur Berücksichtigung des Wertes der Ausgangsflächen herangezogen (Spalte 2). Ein Merkmal dieser Werte ist die relativ geringe Differenz zwischen der höchsten und niedrigsten Ausprägung (Hochmoor: Acker = 96: 17). Solche Wertverhältnisse mögen realistisch sein, wenn alle Funktionen des Naturhaushalts zu betrachten sind. Für das Teilziel der Erhaltung von Arten liegen sie jedoch zu eng beeinander (vgl. SCHWEPPE-KRAFT 1994). Deshalb wurde eine mathematische Transformation der Werte durchgeführt, deren Ergebnisse dem Autor für das allein dem Arten- und Biotopschutz geltende Wertverhältnis angebrachter erschienen. Das aus Spalte 11 ablesbare Wertverhältnis zwischen Hochmoor und Acker beträgt nach Transformation 100 : 5. Die Werttransformation führte dazu, daß der über alle 51 Biotoptypen gewichtete Durchschnittswert des "Fonds-Modell" wegen der generell geringeren anzurechnenden Ausgangswerte der Wiederherstellungsflächen mit 15.93 DM/m" weniger als halb so hoch ausfiel wie der Durchschnittswert, der sich auf der Grundlage der nicht transformierten Werte errechnete.

Überraschend ist weiterhin die Tatsache, daß die berechneten "biotoptypenspezifischen Entschädigungsforderungen" wesentlich geringer ausfallen als die Werte des "Fonds-" oder des "Investitionsmodells". Das gilt nicht nur für den Durchschnitt der Entschädigungsforderungen der mit 11.45 DM/m" nur etwa halb so groß ausfällt wie beim "Investitionsmodell", sondern gerade auch für hochwertige Biotoptypen. Nur wenige hochwertige Biotope (z.B. extensives Grünland und Magerrasen) weisen Entschädigungsforderungen auf, die über den Werten des "Investitionsmodells" liegen.

Dieses Resultat steht ganz im Widerspruch zu der oben geäußerten Annahme, daß die Werte des "Investitionsmodells" Untergrenzen für die Zahlungsbereitschaft darstellen müßten und auch im Widerspruch zu den Ergebnissen von HAMPICKE et al. (1991: iii,iv), wonach die Zahlungsbereitschaft für das entworfene Arten- und Biotopschutzprogramm ca. 5-mal so groß ist wie dessen Kosten.

Der Widerspruch zu den Ergebnissen von HAMPICKE et al. läßt sich im wesentlichen durch die abweichende Kostenbasis erklären. Bei HAMPICKE et al. (1991: 393, 410) liegen die durchschnittlichen (einzelwirtschaftlichen) Herstellungskosten pro ha bei ca. 600 DM/Jahr. Das entspricht bei einer Diskontrate von 4% einem einmaligen Betrag von 1.50 DM/m". Beim "Fonds-" und "Investitionsmodell" liegen die durchschnittlichen Kosten einer wertmäßigen 1:1 Wiederherstellung pro m" (ohne Sicherheitszuschlag) dagegen bei 4.43 DM/m". Tatsächlich ist der Unterschied der Kosten noch bedeutend höher, da in die Durchschnittswerte für 1:1 Wiederherstellungen anders als bei HAMPICKE et al. ein umfangreicher Anteil wertmäßig besonders "billig" herzustellender Biotope wie Acker, Intensivgrünland und Forsten eingeht.

Für den erheblichen Kostenunterschied sind u.a. folgende Faktoren ausschlaggebend:

- Die Angaben für Kosten einzelner Maßnahmentypen im Rahmen von Biotopwiederherstellungen waren in allen (zusätzlich) vewendeten Quellen z.T. deutlich höher als bei HAMPICKE et al. Deshalb wurden auch für die eigenen Berechnungen höhere Werte als bei HAMPICKE ET AL. verwendet.
- Beim "Fonds-" und "Investitionsmodell" wurden Planungskosten und Kosten für Erfolgskontrollen berücksichtigt, die bei HAMPICKE et al. fehlen.
- Es gehen beim "Fonds-" und "Investitionsmodell" Ausgleichszahlungen und Grundstückskosten ein, die bei HAMPICKE et al. zum Teil als Transferzahlungen angesehen werden.
- Bei HAMPICKE et al. wurden nur relativ kostengünstige Maßnahmenbündel kalkuliert, im "Fonds-" und "Investitionsmodell" dagegen wie oben begründet auch teuerere Maßnahmen, wenn auch gering gewichtet.

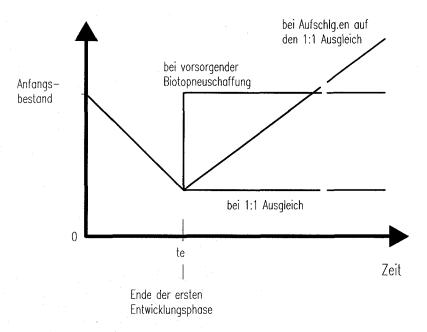
Entsprechen die dem Investitionsmodell zugrunde gelegten Kostendaten, Entwicklungszeiten, Nutzenverläufe und Herstellungsrisiken tatsächlich den durchschnittlich zu erwartenden Daten und geben die berechneten "biotoptypenspezifischen Entschädigungsforderungen" tatsächlich die Wertschätzung gegen Biotopzerstörungen wieder, so bedeuten Entschädigungsforderungen, die unter den Ergebnissen des "Investitionsmodells" liegen, daß die interne Verzinsung der Biotopwiederherstellungen geringer ist als die herrschende Zeitpräferenzrate. Mit anderen Worten: Die im Rahmen der Eingriffsregelung (durchschnittlich) durchgeführten Ausgleichs- und Ersatzmaßnahmen wären nach neoklassischen Maßstäben auch unter Berücksichtigung des Naturschutznutzens als unrentabel anzusehen und damit von den individuellen Präferenzen her abzulehnen. In diesem Fall wäre die Bestimmung eines "safe minimum standard" notwendig für den langristigen Erhalt von Biotopen.

Es kann aber auch sein, daß die geschätzten Wiederherstellungskosten zu hoch liegen; entweder weil in der Praxis der Eingriffsregelung tatsächlich relativ teuere Maßnahmen durchgeführt werden oder weil im angenommenen Maßnahmenmix der Anteil teuerer Maß-

nahmen zu hoch eingeschätzt wurde. Ein Blick auf die Spalte 7 der Tab. 2 zeigt, daß es in vielen Fällen innerhalb des Maßnahmenmixes kostengünstige Varianten gibt, die unter oder nahe bei den Entschädigungsforderungen liegen.

Schließlich kann auch nicht ausgeschlossen werden, daß die Entschädigungsforderungen zu gering geschätzt wurden. Durch die empirisch schlecht absicherbaren vielen Eingangsdaten über Verzinsung, Nachfragekurven, Entwicklungsverläufe und Anrechnung von Ausgangswerten ist gerade dieses Modells sehr anfällig gegenüber einer Änderungen der Annahmen. Um die aufgeworfenen Fragen zum Verhältnis von langfristigen Erhaltungskosten und individuellen Präferenzen zu beantworten und gesichertere Werte zur Berücksichtigung von Naturschutzzielen bei der Projektbewertung zu erhalten, wäre es insbesondere nötig:

- genauere Daten über Wiederherstellungskosten inkl. dem in der Realität nötigen
 "Maßnahmenmix" zu ermitteln (vgl. FEICKERT et al. 1993)
- und Entschädigungsforderungen gegen Biotopzerstörungen nicht nur indirekt aus Zahlungsbereitschaften für komplexe Naturschutzprogramme abzuleiten, sondern durch geeignete Umfragemethoden auch direkt zu ermitteln, ohne dabei allerdings das o.g. Informationsproblem außer acht zu lassen.


Literatur

- AAV-Hessen (1995): Ausgleichsabgabenverordnung vom 9. 2. 1995. Gesetzes- und Verordnungsblatt Hessen, I S. 120, II 881-41.
- Adam, Karl; Nohl, Werner; Valentin, Wolfram (1987): Bewertungsgrundlagen für Kompensationsmaßnahmen bei Eingriffen in Natur und Landschaft. Hrsg. vom Ministerium für Umwelt, Raumordnung und Landwirtschaft Nordrhein-Westfalen, Düsseldorf, 399 S.
- Blöchliger, Hansjörg (1992): Der Preis des Bewahrens. Ökonomie des Natur- und Landschaftsschutzes. Chur/Zürich (Verlag Rüegger), 187 S.
- Feickert, Uwe et al. (1993): Faktische Grundlagen für die Ausgleichsabgabenregelung (Wiederherstellungskosten). Forschungsendbericht, F+E 10801151, UFOPLAN 1992, im Auftrag der Bundesforschungsanstalt für Naturschutz und Landschaftsökologie. Ca. 130 S.
- Hampicke, Ulrich (1991): Naturschutz Ökonomie. Stuttgart.
- Hampicke, Ulrich et al. (1991): Kosten und Wertschätzung des Arten- und Biotopschutzes. Berlin (Erich Schmidt), (Umweltbundesamt, Berichte 3/91)
- Kaule, Giselher und Schober, Michael (1985): Ausgleichbarkeit von Eingriffen in Natur und Landschaft. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten, Reihe A: Angewandte Wissenschaft Heft 314, Münster - Hiltrup.
- Ludwig, Dankwart; Meinig, Holger (1991): Methode zur ökologischen Bewertung der Biotopfunktion von Biotopen. Gutachten für den Landschaftsverband Rheinland, Auftragnehmer: Froelich + Sporbeck, Landschafts- und Ortsplanung, Umweltplanung, Bochum.
- Marticke, Hans-Ulrich (1996): Zur Methodik einer naturschutzrechtlichen Ausgleichsabgabe. In: Natur und Recht (1996) 8, S.387-400.
- Müller-Pfannenstiel, Klaus; Schweppe-Kraft, Burkhard; Borkenhagen, Jörg; u.a. (1995): Methode zur Berechnung einer Ausgleichsabgabe Thüringen. Gutachten im Auftrag des Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt. Plauen (Büro Froelich + Sporbeck)

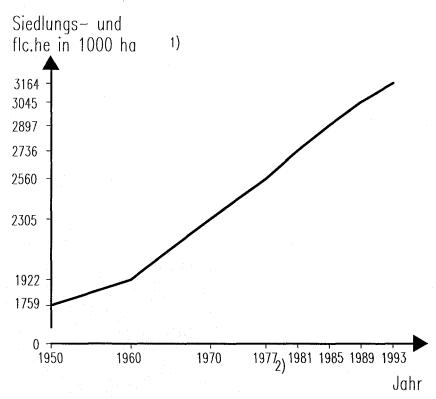

- Plankl, Reiner (1995): Synopse zu den umweltgerechten und den natürlichen Lebensraum schützenden landwirtschaftlichen Produktionsverfahren als flankierende Maßnahmen zur Agrarreform.
 Tabellarische Übersicht über die einzelnen Umweltprogramme gemäß VO (EWG) 2078/92. Braunschweig, Arbeitsbericht der Bundesforschungsanstalt für Landwirtschaft Braunschweig Völkenrode Nr. 1/1995
- Rat von Sachverständigen für Umweltfragen (1994): Umweltgutachten 1994, Stuttgart (Metzler-Poeschel)
- Riecken, Uwe (1992): Grenzen der Machbarkeit von "Natur aus zweiter Hand". In: Natur und Landschaft 67 (1992) 11, S. 527-535.
- Scherfose, Volker; Frank, Kerstin (1994): Kostenermittlung von Naturschutzmaßnahmen im Rahmen der Naturschutzgroßprojekte des Bundes und der Erprobungs- und Entwicklungs-(E+E) vorhaben. Bundesamt für Naturschutz, 44.S, unveröffentlicht
- Schweppe-Kraft, Burkhard (1992): Ausgleichszahlungen als Instrument der Ressourcenbewirtschaftung im Arten- und Biotopschutz. In Natur und Landschaft 67(1992)9, S.410-413
- Schweppe-Kraft, Burkhard (1994): Naturschutzfachliche Anforderungen an die Eingriffs-Ausgleichs-Bilanzierung. Teil 1: Unsicherheiten bei der Bestimmung von Ausgleich und Ersatz. In: Naturschutz und Landschaftsplanung 26(1994)1, S.5-12
- Schweppe-Kraft, Burkhard (1996): Bewertung von Biotopen auf der Basis eines Investitionsmodells
 Eine Weiterentwicklung der Methode Koch. In: Wertermittlungsforum, Heft 1, 1996.
- Schweppe-Kraft, Burkhard (1997): Monetäre Bewertung von Biotopen und ihre Anwendung bei Eingriffen in Natur und Landschaft. Diss. am Fachbereich 7, Umwelt und Gesellschaft der Technischen Universität Berlin, Mikrofiche. Überarbeitete gedruckte Fassung erscheint voraussichtlich Ende 1997 in der Reihe Angewandte Landschaftsökologie, hrsg. vom Bundesamt für Naturschutz.

Abbildung 1: Entwicklung eines Biotopbestandes bei konstanten jährlichen Eingriffen und unterschiedlichen Ausgleichsstrategien

Bestand entwickelter Biotope bei konstanten

Abbildung 2: Entwicklung der Siedlungs- und Verkehrsflächen

- 1) Nach Umweltbundesamt 1993; Statistisches Bundesamt 2) Die Angaben fr. 1981 bis 1989 sind aufgrund erheblich gen.derten Erhebungsverfahrens inhaltlich voll mit den Werten bis 1977

Abbildung 3: Den Ergebnissen in Tabelle 2 zugrunde gelegte Formel des "Fonds-Modells"

$$A_F = (KEF + KF * z_l * TE) * \frac{W_E}{(W_{pA_E} - W_A) * (1 - r)} * F_E - KEV$$

A_F: Ausgleichsabgabe nach "Fonds-Modell"

KEF: Kosten der Wiederherstellung pro Flächeneinheit (aus rechtlichen Gründen berechnet nur bis zum Ende der Entwicklungszeit)

KF: Kosten der Wiederherstellung und Erhaltung pro Flächeneinheit (Planungskosten + Barwert der Grundstückskosten (Kauf oder Pacht) + Barwert der Herstellungskosten inklusive Entwicklungspflege + Barwert der Erfolgskontrollkosten + Barwert der Kosten der Erhaltungspflege)

z_L: Zinssatz für langfristige Kredite

TE: Entwicklungszeit des Biotops

W_E: Naturschutzfachlicher Wert des beeinträchtigten Biotops je Flächeneinheit

W_{nAe}: Wert der Ausgleichs- und Ersatzflächen je Flächeneinheit nach Durchführung der Wiederherstellungsmaßnahmen und Beendigung der Entwicklungszeit bei vollem Maßnahmenerfolg

W_A : Wert der Ausgleichs- und Ersatzflächen je Flächeneinheit vor Durchführung von Wiederherstellungsmaßnahmen

r : Faktor zur Kompensation von Risiken bei der Wiederherstellung. Er ist so hoch zu wählen, daß der gewünschte Funktions- bzw. Wertumfang zumindest im Durchschnitt der Fälle erreicht wird. (Bestehen keine Risiken, ist der Faktor = 0, wird im Durchschnitt der Fälle nur 30% des vollen Erfolges erreicht, so ist "r" 0,3).

F_E: Fläche des beeinträchtigten (zerstörten)Biotops

KEV: durch den Eingriff für den Naturschutz "ersparte" Kosten (bei Vollverlust z.B. Barwert der Kosten zur Erhaltungspflege des beeinträchtigten Biotops)

Abbildung 4: Mathematische Grundlagen des "Investitionsmodells

1. Barwert einer Biotopentwicklung über die gesamte Lebensdauer unter der Bedingung üblicher Rentabilität / optimaler Allokation:

$$BWE_{1} = \sum_{t=1}^{L} \left[\left(\partial N_{t} - K_{t} \right) * \left(\frac{1}{1+z} \right)^{t} \right] = 0$$

2. Funktion der relativen Höhe der Nutzen während der Reifezeit

$$fw_{t}(t) = \frac{\partial N_{t}}{\partial N_{TE}}$$

3. Wert eines entwickelten Biotops

$$BWE_{t} = \sum_{t=TE}^{L} \left[\left(\partial N_{TE} - PK \right) * \left(\frac{1}{1+z} \right)^{t-TE+1} \right]$$

BWE₁: Barwert einer Biotopentwicklung zum Beginn der Herstellungsmaßnahmen

BWE_{TE}: Barwert einer Biotopentwicklung ab dem Reifezeitpunkt

t: Index der Zeit (Jahre), ausgehend vom Beginn der Herstellungsmaßnahmen

L: Lebensdauer eines Biotops (in der Regel unendlich)

δN_{t, TE}: Aufgrund von Biotopherstellungs- und pflegemaßnahmen ausgelöste Erhöhung

der monetär ausgedrückten Naturschutznutzen im Jahre "t" bzw. am Ende der

Reifezeit "TE"

K₁: Kosten der Biotopherstelluhgs und -pflegemaßnahmen im Jahre "t"

z: Kalkulationszins

fwt (t): Verhältnis der Erhöhung der Naturschutznutzen im Jahre "t" im Vergleich zur

Erhöhung des Naturschutznutzens nach Beendigung der Reifezeit

PK: durchschnittliche jährliche Pflegekosten des reifen Biotops

Abbildung 5: Umrechnung von Zahlungsbereitschaften in biotoptypenspezifische Entschädigungsforderungen

Ermittlung der Zahlungsbereitschaft für ein Arten- und Biotopschutzprogramm

Ermittlung des naturschutzfachlichen Werts einer Biotopbeeinträchtigung im Verhältnis zum naturschutzfachlichen Wert des Aren- und Biotopschutzprogramms

Ermittlung der Entschädigungsforderung gegen die Beeinträchtigung unter Berücksichtigung von Abzinsungsannahmen und Nachfragekurven

Abbildung 6: Abschätzung des Effektes sinkender Grenznutzen bei der Umrechnung von Zahlungsbereitschaften in Entschädigungsforderungen

Zahlungsbereitschaft pro Biotopwertpunkt

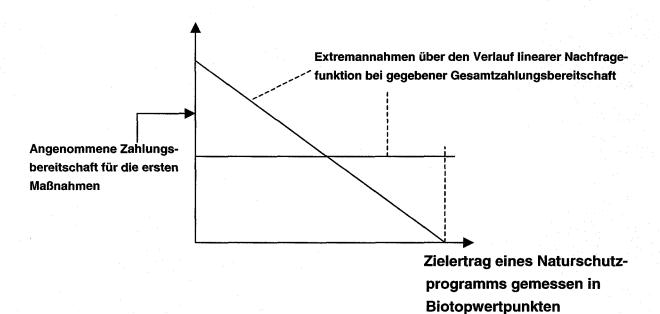


Tabelle 1: Kalkulation durchschnittlicher Abgaben nach dem "Fonds-Modell" für das Beispiel: Magerrasen

Wiederherstellungs- variante 1)		II.		IV	V
Ausgangsbiotop / Maßnahmenbündel:	verbusch-	+/- ext.	Acker	Acker	Nade
Maßnahmenbündel:	ter Ma-	Grünland	Abtrag	Transplan-	for
	gerrasen	Aushag.	Oberboden	tation	Abhol
Einzelmaßnahmen		· K	Costen in DM/ha	a	
Entbuschen	6.000				
Schl. und Entf. der Bäume					6.96
Wurzelstöcke entfernen					25.2
Schlagräumung					4.23
Meliorationskalkung					1.50
Abtrag Maschine			34.800	34.800	
Modellieren			14.425	14.425	
Baustelle (10x10m)			4.897	4.897	
Transplantation			44.40=	193.008	
Heublumensaat		0.040	14.435		14.4
Aushagerung (abgezinst)		8.340			
unterstütz. Heublumensaat		1.495			
nach 5 Jahren (abgezinst) Gesamte Erstinstand-		1.495			
setzungskosten	6.000	9.835	68.557	247.130	52.3
	0.000	3.033	00.337	247.130	32,3
Pflegekosten während Entwicklungszeit (abgezinst)	10.007	0.000	10.007	F 000	10.6
abgezinste Ausgleichszahlung	10.227	8.229	12.037	5.888	12.6
ohne Aushagerungsphase	5.113	6.673	18.056	8.832	6.3
Grunderwerb	15.000	20.000	25.000	25.000	26.0
Pacht während Entw.zeit	2.557	2.753	6.771	3.312	20.0
Anteile:	2.557	2.755	0.771	3.312	
Grunderwerb + Pflege	10%	10%	10%	10%	25
Pacht + Pflege	45%	45%	45%	45%	20
Ausgleichszahlung	45%	45%	45%	45%	75
Flächensicherungs- und	4370	4370	7570	4570	, ,
Pflegekosten	10.576	10.767	20.292	11.203	14.3
	10.570	10.707	20.232	11.200	17.0
Kosten für Planung und Erfolgskontrolle	7.104	8.830	15.327	15.327	15.5
					15.5
Gesamtkosten	23.680	29.432	104.176	273.660	82.2
Aufschläge:	1010/	000/	201	00/	
wegen Wert Ausgangsbiotop	101%	22%	8%	8%	35
Risikoaufschlag	0%	18%	67%	18%	18
für Entwicklungszeit	150%	180%	240%	60%	300
Gesamtaufschlag	404%	303%	515%	104%	537
Durch Eingriff ersparte langfristige Pflege-					
und Sicherungskosten	1.275	1.184	2.128	2.128	1.4
Abgabe pro Variante =	1.275	1.104	2.120	2.120	1.70
Gesamtkosten + Aufschläge	117 000	117 224	638.202	556.626	522.6
- ersparte Kosten Gewichtung der Variante	117.992 30%	117.324 20%	5%	556.626	15
	0070	2070		0,0	
Abgabe			274.383		

 Die Varianten V, Entwicklung aus Intensivgrünland durch Aushagerung, Gewichtung 20% und VI, Entwicklung aus Intensivgrünland mit Oberbodenabtrag, Gewichtung 5% wurden nicht dargestellt

Tabelle 2: Monetäre Biotopwerte für ausgewählte Biotoptypen. Ausgangsdaten und Ergebnisse

Biotoptyp	Fläch Ant	en Bio		4 Risiko- aufschlag (%)	ø einfach. Herst kosten mit Wert ausgleich (DM/m²)	6 Abgabe nach Fonds- Modell (DM/m²)	bi Va des F M	7 erste/ Iligste riante onds- odells von 6)	8 Fonds- Modell verteilt nach Bio- topwert (DM/m²)	9 Abgabe nach Invest Modell (DM/m²)	Entsch. Forde- rung	11 _Biotopwert _trans for miert _(DM/m²	12 Abgabe nach Fonds- Modell () (DM/m²)	13 Biotop- typ. Entsch. Forde- rung (DM/m²)
Salzwiesen Unreg. kaum belast. Fließgewässer Mesotrophe naturnahe Stillgewässer naturferne Fließgewässer naturferne Stillgewässer	0.0 0.4 0.2 1.1 0.5	40 84 20 83 82 55	15 80 20 - 30 80 20 - 30	15 40 40 40 40	3.03 82.56 52.35 54.05 27.44	6.64 798.03 218.53 522.53 114.42	100 100 64 100 65	100 100 172 100 171	82.85 99.42 98.23 65.09 50.89	3.95 448.25 135.62 293.50 71.00	24.66 29.59 29.24 19.38 15.15	_ 40 _ 66 _ 64 _ 23 _ 14	4.22 509.59 154.51 176.01 34.56	7.58 12.48 12.05 4.31 2.68
Röhricht Hochmoor naturnah - natürlich Übergangs- udegrad. Hochmoore Großseggenried, Niedermoor, Sümpfe Streuwiesen Sumpfdotterblumen Kohldistelwiesen relativ extensives Feuchtgrünland	0.1 0.2 0.1 0.1 0.2 0.4	23 96 86 85 92 72 12 76 24 61	10 - 15 150 - 250 150 - 250 10 - 50 10 - 60 10 - 30 10 - 30	0 40 40 0 - 20 0 - 40 0 - 15	8.50 41.51 34.13 16.22 18.91 12.71 13.75	14.23 967.80 786.95 48.38 98.67 33.55 33.47	37 48 52 60 21 35 25	670 152 148 195 369 268 292	81.66 113.62 100.60 85.21 89.95 72.20 67.46	10.41 584.05 474.69 28.23 56.92 19.79 19.75	24.31 33.82 29.95 25.37 26.77 21.49 20.08	_ 39 _ 100 _ 69 _ 43 _ 50 _ 29 _ 25	10.53 635.15 414.16 32.87 62.55 21.31 20.46	7.30 18.82 12.92 8.15 9.41 5.42 4.66
Extensives frisches Grünland Mager- und Halbtrockenrasen Intensivgrünland Acker Felsen, Block- und Geröllhalden Zwergstrauchheiden Ginster- und Wacholderheiden	0.2 0.2 15.5 36.4 0.0 0.0	72 83 52 28 28 17 02 66 67 73	10 - 30 10 - 50 15 - 30 15 - 30 30 30 - 150 30 - 150	0 - 40 0 0 0 0 0 - 40 0 - 40	7.59 11.23 2.42 1.49 129.87 23.63 19.87	14.47 41.85 5.71 3.47 363.62 206.76 175.33	58 42 74 74 100 43 42	153 213 160 159 100 150 151	66.28 98.23 33.14 20.12 78.11 86.40 75.75	8.68 23.84 3.07 1.88 218.76 124.50 105.84	19.73 29.24 9.86 5.99 23.25 25.72 22.55	24 _ 64 _ 8 _ 5 _ 35 _ 45 _ 32	9.4 27.44 2.91 1.86 326.82 135.38 94.53	4.48 12.05 1.46 0.94 6.54 8.45 6.07
Naturnaher Wald, incl. Bruchwald Auewälder	1.9 0.0	90 87	150 - 250 150 - 200	15 15	6.56 19.01	100.60 277.65	11 73	316 149	100.60 102.97	62.06 166.85	29.95 30.65	69 _ 74	63.64 180.28	12.92 13.85
Laubforste 1-40 Jahre Laubforste 41-100 Jahre Laubforste 101-140 Jahre	3.0 4.6 2.4	30 51	150 - 250 150 - 250 150 - 250	15 15 15	3.16 3.93 4.71	48.55 60.40 72.24	11 11 11	316 316 316	48.52 60.36 72.20	29.93 37.23 44.53	14.44 17.97 21.49	_ 13 _ 20 _ 29	12.20 18.18 26.73	2.48 3.69 5.42

Piotontyn		- 1	2		. 3	4	5	6		7	8	9	10	_ 11	12	13
Biotoptyp (Fortsetzung)	F	Flächen Anteil V	Bio- top- Vert	_	Entw. -Zeita	Risiko- ufschlag	ø einfach. Herst kosten	Abgabe nach Fonds-	bi	erste/ Iligste riante	Fonds- Modell verteilt	Abgabe nach Invest	Biotop- typ. Entsch.	wert	Abgabe nach Fonds-	Biotop- typ. Entsch.
			• • • • • • • • • • • • • • • • • • • •	71	abra\	/o/ \	mit Wert ausgleich	Modeli	des F	onds- odelis	nach Bio- topwert	Modell	Forde- rung	_ for- _ miert	Modell	Forde- rung
		(%)		(Ja	ahre)	(%)	(DM/m²)	(DM/m²)	. (% '	von 6)	(DM/m²)	(DM/m²)	(DM/m²)	_(DM/m²) (DIVI/m²)	(DIVI/M²)
Fichtenforste 1-20		2.321	35	150 -	250	15	2.70	41.45	11	316	41.42	25.55	12.33	10	9.56	1.94
Fichtenforste 21-80		8.368	36	150 -	250	15	2.78	42.63	11	316	42.61	26.28	12.68	11	9.96	2.02
Fichtenforste 81-140		2.775	42	150 -		15	3.24	49.74	11	316	49.71	30.66	14.80	_ 14	12.71	2.58
Waldweide, Hutewälder		0.607	70	100 -	125	15	12.50	112.64	66	203	82.85	67.60	24.66	_ 40	67.24	7.58
Nieder- und Mittelwälder		0.512	73	30 -	50	0 - 15	6.28	23.81	30	286	86.40	12.78	25.72	_ 45	14.78	8.45
Waldränder nicht naturnah		0.573	49	10 -	60	15 - 40	15.00	67.08	72	147	57.99	37.82	17.26	_ 18	33.67	3.41
Waldränder naturnah		0.010	71	10 -	60	15 - 40	22.01	98,55	70	144	84.03	55.88	25.01	_ 42	78.45	7.86
Waldsäume bis mäßig naturnah		0.132	45		25	0	3.46	8.66	90	120	53.26	4.87	15.85	_ 15	5.30	2.91
Waldsäume naturnah		0.002	59		25	0	4.54	11.18	90	121	69.83	6.38	20.79	27	8.99	5.03
Hecken, Feldgehölze		0.437	53	10 -	50	15	21.21	80.26	69	119	62.73	47.18	18.67	_ 21	54.12	3.99
Reife Streuobstbestände		0.224	73	5 -	50	0 - 40	8.47	35.87	27	181	86.40	20.59	25.72	_ 45	29.05	8.45
Obstanlagen		0.218	27	.5 -	50	0 - 40	3.13	13.36	27	181	31.96	7.62	9.51	_ 7	4.86	1.40
Grünflächen im Siedlungsbereich		6.559	30	20 -	50	0 - 15	4.19	14.98	35	362	35.51	8.14	10.57	_ 8	6.79	1.58
mit dem Flächenanteil gewichteter Durchschnitt aller Biotoptypen			32				4.43	38.46			38.46	22.80	11.45	- 12	15.9	3 2.32

Peter Rieken

Die Berücksichtigung von Umweltwirkungen im Rahmen gesamtwirtschaftlicher Bewertungsrechnungen für verkehrliche Investitionsvorhaben an Binnenwasserstraßen

Zur Vorbereitung des Bundesverkehrswegeplanes 1992 wurden für eine Reihe von Wasserstraßenprojekten gesamtwirtschaftliche Bewertungsrechnungen nach der einheitlichen Methodik der Bundesverkehrswegeplanung durchgeführt. Die Projektwirkungen werden hiernach als Differenz zwischen dem Planungsfall, der die zu bewertende Verkehrswegeinvestition einbezieht, und dem Vergleichsfall, der sich ohne diese Investition ergeben würde, ermittelt. Als gesamtwirtschaftlicher Bewertungsmaßstab zur Beurteilung der Projekte wird das Nutzen/Kosten-Verhältnis verwendet.

Bei den Effekten von Investitionsvorhaben an Binnenwasserstraßen stehen auf der Nutzenseite in aller Regel die Transportkostenersparnisse der Binnenschiffahrt im Vordergrund. Weitere wesentliche Bereiche umfassen die räumlichen Effekte sowie externe und ökologische Wirkungen. Externe Effekte werden im Bewertungsverfahren zum BVWP'92 in den Bereichen Verkehrssicherheit, Luft- und Lärmbelastungen, Trennwirkungen sowie innerörtliche Beeinträchtigung der Wohn- und Lebenssituation berücksichtigt. Für den Verkehrszweig Binnenschiffahrt sind hierbei insbesondere veränderte Abgasbelastungen relevant, die sich bei Projektrealisierung innerhalb des Verkehrssystems Binnenschiffahrt/ Wasserstraße infolge der geänderten Fahrzeugstrukturen und -auslastungen ergeben können. Externe Kosten aus Lärmbelastungen, Verkehrsunfällen und Trennwirkungen sind hingegen bei der Bewertung von Binnenwasserstraßeninvestitionen in aller Regel nur dann von entscheidungsrelevanter Bedeutung, wenn projektbedingt Aufkommensverlagerungen zwischen den Verkehrsträgern zu erwarten sind.

Auch ökologische Wirkungen, wie etwa Eingriffe in unberührte Naturräume, die für die Gesellschaft einen Wert darstellen, sind prinzipiell bewertbar. Methodische Schwierigkeiten, empirische Lücken sowie insbesondere die mangelnde Akzeptanz vorliegender ökonomischer Bewertungsansätze verhindern allerdings bisher noch die vollständige Einbeziehung der Projekteinflüsse auf Natur und Landschaft auf der Nutzenseite des monetären Bewertungsverfahrens. Die ökologischen Wirkungen werden daher hilfsweise über die Kosten für Ausgleichs- und Ersatzmaßnahmen, die zur Kompensation von Eingriffen in den Naturhaushalt und das Landschaftsbild erfahrungsgemäß erforderlich werden, abgeschätzt und als Teil der Projektkosten berücksichtigt.

Weitergehende Umweltverträglichkeitsstudien wurden und werden im Rahmen von Raumordnungs- und Planfeststellungsverfahren entsprechend den Regelungen des UVP-Gesetzes durchgeführt. Eine monetäre Bewertung der Wirkungen findet hierbei in aller Regel allerdings nicht statt.

Direkte Wirkungen auf Natur und Landschaft werden im gesamtwirtschaftlichen Verfahren zur BVWP bisher somit nur über die Hilfskonstruktion der Kosten für Ausgleichs- und Ersatzmaßnahmen berücksichtigt. Weitergehende Ansätze zu umwelt-ökonomischen Bewertung finden sich indes bei der Behandlung veränderter Schadstoffbelastungen, die in ihren Wirkungen wiederum die Schutzgüter des UVP-Gesetzes betreffen.

Im Rahmen der Vorarbeiten zum BVWP'92 wurden die Verfahren zur Erfassung und Bewertung der Abgasbelastungen des Verkehrs auf inner- und außerörtliche Belastungen der Verkehrsträger Straße, Bahn und Binnenschiffahrt erweitert. Die Emissionsbewertung erfolgt in einem dreistufigen Verfahren:

- Ausgehend von Energieverbrauch und Emissionsfaktoren werden in einem ersten Schritt Emissionsbilanzen aufgestellt.
- In einem zweiten Schritt werden die Emissionen unter Berücksichtigung ihrer relativen Gefährdungspotentiale in CO-Äquivalente (COE) umgerechnet, wobei innerörtliche Emissionen gesondert behandelt werden.
- 3. Die monetäre Bewertung erfolgt schließlich in einem dritten Schritt anhand nach Schadensbereichen differenzierter Wertansätze.

Erfaßt und bewertet werden projektbedingte Änderungen der Emission von Kohlenmonoxid (CO), Stickstoffoxiden (NOx), Schwefeldioxid (SO2), organischen Verbindungen (VOC) und Stäuben bzw. Rußpartikeln. Kohlendioxidemissionen werden zwar erfaßt, jedoch nicht monetär bewertet.

Zur Bestimmung der jeweils relevanten Emissionsmengen kann für die Binnenschiffahrt auf die aus den Bewertungsrechnungen relationsspezifisch vorliegenden Treibstoffverbräuche zurückgegriffen werden. Unter Anwendung der für den Binnenschiffsverkehr im Jahr 2010 prognostizierten Emissionsfaktoren lassen sich aus dem Treibstoffverbrauch die relevanten Emissionsmengen herleiten.

Vorliegende Schadenskostenschätzungen beziffern in aller Regel die Summe der durch alle relevanten Luftschadstoffe verursachten Schäden. Da eine eindeutige Zuordnung der Schäden zu einzelnen Schadstoffarten beim gegenwärtigen Kenntnisstand nicht möglich ist, ist somit auch eine Aggregation der sie verursachenden Emissionen erforderlich.

Um bei dieser Aggregation Unterschiede in der Zusammensetzung der verkehrsbedingten Emissionen nach den einzelnen Luftschadstoffen berücksichtigen zu können, ist deren Gewichtung nach ihren relativen Gefährdungspotentialen erforderlich. Differenzierte Erkenntnisse zur spezifischen Wirkungsintensität der Schadstoffarten liegen nicht vor. Es wurde daher ersatzweise und vereinfachend davon ausgegangen, daß die aktuellen Grenzwerte das jeweilige Gefährdungspotential der Emissionen zumindest ansatzweise zutreffend widerspiegeln. Trotz der unstrittigen Schwächen dieser Vorgehensweise wurde hierin gegenüber einer ungewichteten Aggregation die bessere Alternative gesehen.

Die Grundproblematik der monetären Bewertung nicht marktfähiger Güter bzw. nicht über Märkte vermittelter Wohlfahrtseffekte besteht darin, über geeignete Indikatoren die individuellen Präferenzen als Maßstab der Bewertung der Güterversorgung durch die Bevölkerung offenzulegen. Anknüpfungspunkte der Verfahren zur Abschätzung der durch Umweltwirkungen eintretenden Wohlfahrtseffekte können sowohl das soziale Verhalten als auch techni-

sche Wirkungen sein. Die wichtigsten Ausprägungen der Methoden lassen sich mit den Begriffen Vermeidungskosten, Marktdatendivergenz, Zahlungsbereitschaft und Schadensfunktionen umschreiben.

Als ein weiteres zentrales Problem bei der Bewertung von Umweltwirkungen sind die Grenzbereiche zwischen naturwissenschaftlichen und ökonomischen Erkenntnissen zu nennen. Insbesondere handelt es sich hierbei um die folgenden Bereiche:

- Erfassungsproblem: Aufgrund von Schwierigkeiten in der Erhebung und Dokumentation von Schäden entstehen häufig Mängel im vorhandenen Datenmaterial.
- Erkenntnisproblem: Das Problem der unzureichenden Kenntnis der Ursachen und Wirkungen von Schadstoffemissionen stellt eine der zentralen Schwierigkeiten in der Abschätzung und Bewertung von Umweltschäden dar.
- Zuordnungsproblem: Das Zuordnungsproblem ist eng mit den mangelnden Ursache-Wirkungs-Kenntnissen verbunden. So ist eine Zuordnung von erkannten Schäden zu den verursachenden Emissionen bzw. den Emittenten häufig nicht exakt und zweifelsfrei möglich.
- Synergieproblem: Synergie- und Akkumulationseffekte tragen in ihrem Zusammenwirken zu einer nochmals erschwerten Zurechenbarkeit der Wirkungen zu einzelnen Schadstoffen bei. Darüber hinaus kann es bei Überschreitung bestimmter Schwellenwerte zu sprunghaft veränderten Schadensverläufen kommen.
- Time-Lag-Problem: Zeitverzögert auftretende Wirkungen sowie Langzeitwirkungen beeinträchtigen häufig das Auffinden der Beziehungen zwischen den Ursachen und Wirkungen von Emissionen.
- Wertschätzungsproblem: Da bei Auswirkungen, die sich auf lange Zeiträume erstrecken, Änderungen der gesellschaftlichen Präferenzen eintreten können, unterliegen auch Bewertungsansätze einem ständigen Wandel. Darüber hinaus lassen sich zukünftig neue Vermeidungsstrategien und -technologien sowie Ausweichreaktionen schwerlich umfassend antizipieren.

Schadenskostenschätzungen wurden in den Bereichen Menschliche Gesundheit, Materialund Gebäudeschäden, Waldschäden und Schäden an Nutztieren und Nutzpflanzen vorgenommen.

Die ermittelten Kosten luftschadstoffbedingter Gesundheitsschäden basieren im wesentlichen auf Untersuchungen aus den Jahren 1986 bzw. 1988. Es werden dabei Ressourcenausfallkosten sowie Rehabilitationskosten infolge von Atemwegserkrankungen und Herz-Kreislauf-Leiden berücksichtigt. Zur Monetarisierung der aufgrund von Arbeitsunfähigkeitstagen, vorzeitiger Arbeitsunfähigkeit sowie krankheitsbedingter Todesfälle eintretenden volkswirtschaftlichen Verluste wird der Ressourcenausfall anhand des durchschnittlichen Volkseinkommens je Kopf der erwerbsfähigen Bevölkerung herangezogen. Rehabilitationskosten gehen in Form stationärer Behandlungskosten je Pflegetag bzw. durchschnittlicher Kosten für die ambulante Behandlung je Krankheitsfall in die Berechnungen ein.

Insbesondere aufgrund der nur unvollständigen statistischen Erfassung von Erkrankungen und Krankheitsfolgen stellt die Schätzung eine Untergrenze möglicher Schäden dar.

Besondere Unsicherheiten bestehen in der Abschätzung des Anteils luftverschmutzungsbedingter Erkrankungen an den insgesamt veranschlagten Kosten der Atemwegserkrankungen.

Die Abschätzung luftverschmutzungsbedingter Material- und Gebäudeschäden erfolgt anhand der Differenz der Instandhaltungsintervalle zwischen Immissionsgebieten und gering belasteten ländlichen Gebieten, multipliziert mit den spezifischen Instandhaltungskosten sowie der Oberfläche bzw. Anzahl der exponierten Sachgüter im Immissionsgebiet. Die Schadensschätzung muß als Untergrenze der Gebäude- und Materialschäden gewertet werden. Aufgrund fehlender Daten konnten nicht alle relevanten Sachgütergruppen erfaßt werden (so etwa Lagerhallen, Transportanlagen, Betriebsgebäude). Darüber hinaus bleiben Aufwendungen für den Denkmalschutz unberücksichtigt.

Zur Abschätzung der durch Luftschadstoffe verursachten Waldschäden sowie deren monetäre Bewertung wurde im Verfahren zum BVWP'92 auf eine Untersuchung von Ewers u.a. aus dem Jahr 1986 zurückgegriffen, die ein Simulationsmodell entwickelt, das die langfristige Waldschadensentwicklung in Abhängigkeit verschiedener Belastungsszenarien quantifiziert. Auf Basis der Bestands- und Schadensentwicklung des Status-Quo-Szenarios im Vergleich zum Referenzszenario werden monetäre Schäden in den Bereichen Forstwirtschaft, Freizeit und Erholung sowie Wasserwirtschaft und Bodenschutz abgeschätzt.

Die forstwirtschaftlichen Schäden umfassen holzwirtschaftliche Verluste, Bestandswertminderungen und Düngungskosten. Darüber hinaus werden für solche Flächen, die immissionsbedingt nicht mehr für den Anbau von Hochwirtschaftswald nutzbar sind, Kultur- und Verwaltungskosten veranschlagt. Im Bereich Wasserwirtschaft und Bodenschutz werden erhöhte Kosten für die Hochwasserhaltung, den Erosionsschutz sowie die Trinkwasseraufbereitung erfaßt.

Die Schäden im Bereich Freizeit und Erholung umfassen neben den infolge ausbleibender Waldbesuche entstehenden Mindereinkommen des Fremdenverkehrsgewerbes auch den anhand der Aufwendungen der Bevölkerung für Waldbesuche bewerteten Verlust an Erholungsmöglichkeiten (Nutzerzeitwertmethode). Darüber hinaus wird der Ausfall an optionalen Nutzen, d. h. der Wohlfahrtsverlust derjenigen, die zwar eine gegenwärtige Nutzung nicht beabsichtigen, sich diese jedoch für die Zukunft erhalten wollen, anhand der hierfür bestehenden Zahlungsbereitschaft abgeschätzt.

Es ist zu beachten, daß die Waldschadensschätzung nur einen Teil der Gesamtschäden monetär erfaßt. Vielfältige Leistungen eines intakten Waldes wie etwa die Verbesserung kleinklimatischer Verhältnisse oder der Schutz vor Wind und Lärm konnten nicht monetarisiert werden. Zur Erfassung der Schäden an Nutztieren und Nutzpflanzen wurden Grobschätzungen belastungsbedingter Ertragsausfälle der Rindviehhaltung und der Milchwirtschaft sowie landwirtschaftlicher Mindererträge bestimmter Pflanzenarten herangezogen.

In einem Forschungsvorhaben aus dem Jahr 1995 wurden neben einer Aktualisierung der Wertansätze der bereits für den BVWP'92 berücksichtigten Schadstoffe auch die klimarelevanten Wirkungen von Kohlendioxidemissionen des Verkehrs anhand eines Vermeidungs-

kostenansatzes bewertet ⁵. Als wesentliche Grundlage zur Ableitung dieses Vermeidungskostenansatzes wurde auf eine Studie des Fraunhofer-Instituts zurückgegriffen. Hierin werden die Kosten abgeschätzt, die für eine zur Stabilisierung des CO₂-Niveaus erforderliche Reduktion der CO₂-Emissionen um 80% in den Industrieländern entstehen. Im Ergebnis der Studie werden für die Anwendung in künftigen Projektbewertungen zum BVWP zum Preisstand des Jahres 1992 die folgenden Kostensätze vorgeschlagen:

Vermeidungskosten CO2
 Schadenskosten innerörtlicher Emissionen
 Schadenskosten aller Emissionen
 Schadenskosten aller Emissionen
 Angewendet auf die Verkehrsmengen des Verkehrsprojektes 17 Deutsche Einheit ergeben sich hieraus für den Binnenschiffsverkehr Gesamtkosten der Luftverschmutzung in Höhe von 1,06 Pfg. je tkm.

Die entsprechenden Gesamtkosten der Luftverschmutzung des Straßengüterfernverkehrs betragen durchschnittlich 2,31 Pfg. je tkm, diejenigen des Eisenbahngüterverkehrs im Durchschnitt aller Zuggattungen 1,24 Pfg. je tkm. Ich möchte abschließend nochmals betonen, daß die diesen Kostenberechnungen zugrundeliegenden Schadensschätzungen auf einer Vielzahl teils stark vereinfachender Annahmen und Prämissen beruhen. Die ermittelten Schadenswerte können daher nur als Grobabschätzung betrachtet werden, die insgesamt eher eine Mindestschätzung darstellt

⁵ PLANCO Consulting GmbH, Berücksichtigung wissenschaftlicher Erkenntnisfortschritte im Umweltschutz für die Bundesverkehrswegeplanung, FE-Vorhaben 90387/92 des Bundesministeriums für Verkehr, Schlußbericht, Essen, April 1995

Jürgen Meyerhoff

Ökonomische Bewertung von Feuchtgebieten

Natürliche Auen an Flüssen zählen zu den artenreichsten und produktivsten Ökosystemen Europas. In Deutschland sind ursprünglich natürliche, d.h. von anthropogenen Eingriffen unbeeinflußte Auengebiete nicht mehr vorhanden. Bei den sich selbst erhaltenden Weichholzauen werden die Flächenverluste für die alten Bundesländer auf ca. 75 bis 95 Prozent geschätzt (Colditz 1994, vgl. auch Bürger 1994). Die 1994 erstmals veröffentlichte rote Liste der gefährdeten Biotoptypen für Deutschland stuft sowohl die Weichholz- als auch Hartholzauenwälder in die Kategorie "von vollständiger Vernichtung bedrohte Biotoptypen" ein. Nach der Roten Liste sind insgesamt mehr als zwei Drittel aller vorkommenden und nahezu alle schutzwürdigen Biotoptypen (rund 92%) als gefährdet einzustufen. 15 Prozent werden sogar als von vollständiger Vernichtung bedroht eingestuft. Als wesentlichste Gefährdungskriterien werden die Gefährdung durch direkte Vernichtung (Flächenverlust) und die Gefährdung durch qualitative Veränderungen genannt.

Die Elbe als einer der wenigen Flüsse in Europa, dessen Struktur noch als weitgehend naturnah bezeichnet werden kann, weist im wesentlichen die Charakteristika eines öffentlichen Gutes auf. Ein solches Gut zeichnet sich dadurch aus, daß seine Nutzung durch einzelne Individuen in weiten Bereichen die Nutzung durch andere nicht beeinträchtigt und diese auch nicht von der Nutzung ausgeschlossen werden können bzw. sollen. Dadurch besteht aber kein Anreiz für private Produzenten, dieses Gut anzubieten, und es entstehen auch keine Märkte, auf denen dieses Gut nachgefragt werden könnte.

Andererseits haben die öffentlichen Güter einen bedeutenden Einfluß auf die gesellschaftliche Wohlfahrt. Es fehlen aber Informationen darüber, in welchen Umfang die Individuen die Versorgung mit diesen Gütern wünschen. Lassen sich für diese Güter keine Märkte etablieren - z.B. durch Zuweisung von individuellen Eigentumsrechten - oder soll dies aus sozialen Gründen nicht geschehen, dann bedarf es anderer Verfahren, um Informationen über die Wertschätzung der Individuen zu bekommen. Sie können dann als eine Aufforderung an den Staat angesehen werden, das öffentliche Gut in entsprechendem Umfang bereitzustellen.

Darüber hinaus ist diese Information dann von Bedeutung, wenn die Bereitstellung öffentlicher Güter in Konkurrenz zu anderen Gütern steht, d.h. ein Nutzungskonflikt vorliegt. In diesem Fall ist zu entscheiden, welches der beiden Güter bzw. Güterbündel einen höheren Nutzen stiftet. Dies läßt sich am Beispiel der Elbe erläutern: Würden die Planungen umgesetzt, die Elbe zu einer Binnenwasserstraße nach westdeutschem Standard auszubauen, dann hätte dies gravierende Einflüsse auf die noch bestehende Auenlandschaft entlang der Elbe. Aus Sicht der Ökonomie liegt somit ein Nutzungskonflikt vor: Die beiden unterschiedlichen Nutzungsinteressen an der Natur lassen sich vereinfacht durch folgende Grundpositionen beschreiben, die sich gegenseitig ausschließen (vgl. Blöchliger 1992: 8ff.):

- Auf der einen Seite stehen die Nutzer bzw. die Nutzungsinteressierten. Sie haben ein wirtschaftliches Nutzungsinteresse an der Umwelt (hier Ausbau der Wasserstraßen) und verwenden die Umwelt als privaten, marktfähigen Produktionsfaktor (Transport mit Binnenschiffen).
- Auf der anderen Seite befinden sich die Schützer bzw. die Schutzinteressierten. Sie sind an einer möglichst naturnahen Bewahrung des Umweltgutes in seinem ursprünglichen Zustand interessiert (hier: Nicht-Ausbau der Flüsse). Für sie stehen die verschiedenen konsumtiven und nicht-konsumtiven Nutzen der natürlichen Umwelt im Vordergrund.

Um diesen Nutzungskonflikt "lösen" zu können, d.h. das knappe Gut der dringlichsten Verwendung zuweisen zu können, bedarf es Informationen darüber, welche der beiden Entwicklungsalternativen die Gesellschaft besser stellen würde. Ein ökonomisches Instrument zur Bereitstellung von Informationen über die Vorteilhaftigkeit verschiedener Alternativen ist die Kosten-Nutzen-Analyse. Mit ihr sollen alle relevanten Wohlfahrtseffekte eines zu bewertenden Projektes erfaßt werden, um sie miteinander zu vergleichen.

Die im Rahmen der Bundesverkehrswegeplanung durchgeführte Kosten-Nutzen-Analyse berücksichtigt zwar die Auswirkungen eines geplanten Ausbaus auf die Binnenschiffahrt (z.B. werden die Veränderungen der Transportkosten erfaßt), nicht aber die Auswirkungen auf Natur und Landschaft in monetärer Form. Letztere werden "nur" qualitativ erfaßt, so daß sie mit den übrigen Auswirkungen nicht direkt vergleichbar sind. Anliegen bei der Erstellung einer ökologisch erweiterten Kosten-Nutzen-Analyse ist es daher, auch die Auswirkungen auf Natur und Landschaft in monetärer Form zu erfassen, um sie den anderen Auswirkungen vergleichbar gegenüberzustellen (vgl. Hanley, Splash 1993). Eine Untersuchung zu den Ausbauvorhaben an der Havel legt die Vermutung nahe, daß eine solche ökologisch erweiterte Kosten-Nutzen-Analyse, in der auch der ökonomische Wert für das öffentliche Gut Natur und Landschaft mit berücksichtigt würde, zu deutlich anderen Ergebnissen führen würde als die bisherigen Kosten-Nutzen-Analysen (Meyerhoff, Petschow, Soete 1995).

Bundesverkehrswegeplanung und Kosten-Nutzen-Analyse

Ziel einer Kosten-Nutzen-Analyse (vgl. Hanusch 1987, Mühlenkamp 1994) ist es, sämtliche Auswirkungen öffentlicher Investitionsprojekte zu erfassen und sie sortiert nach positiven und negativen Effekten einander gegenüberzustellen. Damit wird im Grunde das Modell unternehmerischer Investitionsentscheidungen auf öffentliche Projekte übertragen. Allerdings werden im Gegensatz zum betrieblichen Investitionskalkül die Kosten- und Nutzenkomponenten weiter gefaßt: Während dem betrieblichen Investitionskalkül lediglich die Kosten und Erträge, die für das Unternehmen unmittelbar anfallen, zugerechnet werden, sind bei öffentlichen Investitionen die Gesamtwirkungen zu berücksichtigen. Ziel ist es, diese Auswirkungen in monetären Größen zu erfassen. Nach dem "With and Without-Prinzip, wird die Situation im Planungsfall (With) mit der im Vergleichsfall (Without) ex-ante verglichen. Die entsprechende Entscheidungsregel lautet:

Projektumsetzung, wenn
$$\sum_{i=1}^{r} (B_i - C_i) * (1 + r)^{-i} > 0,$$

keine Projektumsetzung, wenn
$$\sum_{i=1}^{t} (B_i - C_i) * (1 + r)^{-i} < 0,$$

wobei *B* die Nutzen aus der Projektrealisierung und *C* die Kosten der Projektrealisierung bezeichnet, *r* ist die Diskontrate, *i* bezeichnet das jeweilige Jahr und *t* die gesamte Projektlebensdauer. Mit Hilfe der Kosten-Nutzen-Analyse sollen entscheidungsvorbereitende Informationen darüber geliefert werden, ob das jeweilige Projekt einen positiven oder negativen Beitrag zur gesellschaftlichen Wohlfahrt liefert.

Grundlage dieser Kosten-Nutzen-Analysen sind sog. Strukturziele wie *Verbilligung von Beförderungsprozessen, Verkürzung von Fahrtdauern* und *Verbesserung der Raumordnung*; aber auch *Entlastung der Umwelt* und *Schonung von Natur und Landschaft* sind Bestandteil des Zielsystems. Für die Strukturziele sind jeweils Leistungsziele definiert, an Hand derer die Auswirkungen in Form positiver und negativer Nutzen monetär erfaßt werden und dann der Summe der Investitionskosten gegenübergestellt werden (vgl. Bundesminister für Verkehr 1993). Wesentliche Größen für diese Kosten-Nutzen-Analyse sind weiterhin das jeweils prognostizierte Verkehrsaufkommen und die angenommene Projektbauzeit.

Tabelle 1: Struktur- und Leistungsziele der Kosten-Nutzen-Analyse in der BVWP

Strukturziele	Leistungsziele
Verbilligung der Beförderungs- prozesse	Senkung von Kosten der Fahrzeugvorhaltung und des Fahrzeugbetriebs
Verkürzung von Fahrtdauern	Beschleunigung von Fahrten; Verkürzung von Fahrtrouten
Erhöhung der Sicherheit	Verminderung von Tötungen, Verletzungen und Sachschäden im Verkehr
Verbesserungen der Raumordnung	Verbesserung der Erreichbarkeit; Verbesserung des Arbeitsplatz- angebotes in strukturschwachen Regionen
Entlastung der Umwelt	Verminderung von Lärm, Luftverschmutzung und Trennwirkungen des Verkehrs
Schonung von Natur und Landschaft	Einsparung am Verbrauch alternativ nutzbarer Bodenflächen; Ver- meidung von Gefährdungen der Wasserqualität sowie von Flora und Fauna
Vorteile aus verkehrsfremden Funktionen	z.B. Erhöhung des Erholungs- und Freizeitwertes von Landschaften; Nutzung von Binnenwasserstraßen für die Wasserüberführung

Quelle: Bundesministerium für Verkehr (1993)

Ökonomische Bewertungslücke - Total Economic Value

Für das Strukturziel Schonung von Natur und Landschaft werden die Auswirkungen nicht in monetären Größen erfaßt und finden daher auch in der Kosten-Nutzen-Analyse keine Berücksichtigung. In den Erläuterungen zu den Bewertungsverfahren wird dies damit begründet, daß es erhebliche methodische Probleme bei der Monetarisierung der Auswirkungen im Rahmen dieses Strukturziels gäbe (Bundesminister für Verkehr 1993, Moosmayer 1994). Schonung von Natur und Landschaft wird damit zwar auf der Ebene der Ziele berücksichtigt, bleibt aber bei der konkreten ökonomischen Bewertung unberücksichtigt. Dadurch kann es

aber zu einer Überschätzung der durch das Projekt zu erwartenden Wohlfahrtssteigerung kommen, da zum einen das Kosten-Nutzen-Verhältnis zu hoch ausfallen kann und zum anderen keine Vergleichbarkeit zwischen den monetär und den qualitativ erfaßten Projektauswirkungen gegeben ist.

Ökologisch bewußte Kosten-Nutzen-Analysen

Für eine ökologische bewußte Kosten-Nutzen-Analyse (vgl. Porter 1982, Hanley, Spash 1993), in der auch die Auswirkungen auf das öffentliche Gut Natur und Landschaft berücksichtigt werden, läßt sich die dargestellte Entscheidungsregel wie folgt erweitern:

$$\Rightarrow \text{Projektumsetzung, wenn} \qquad \qquad \sum_{i=1}^{t} \; \left(\; B_{i} - C_{i} - P_{i} \; \right) * \left(1 + r \right)^{-i} > 0$$

$$\Rightarrow \text{keine Projektumsetzung, wenn} \qquad \qquad \sum_{i=1}^{t} \; \left(\; B_{i} - C_{i} - P_{i} \; \right) * \left(1 + r \right)^{-i} < 0,$$

wobei zusätzlich zur oben angeführten Formel *P* (*Preservation*) die Nutzen aus der Unterlassung bezeichnet. Lassen sich für *B* und *C* noch relativ einfach Werte ermitteln, so sind für *P* monetäre Werte erheblich schwieriger zu ermitteln. Daher wurden diese Nutzen z.B. aus dem Erhalt von Landschaften lange Zeit als *intangibel* bezeichnet, d.h. sie können nicht quantifiziert bzw. monetarisiert werden. Gehen von einem Projekt Auswirkungen auf die Wohlfahrt, die nicht meßbar sind,aus, dann besteht die Gefahr, daß diese Auswirkungen bei der Entscheidungsfindung nicht ausreichend berücksichtigt werden: "Welches ist zum Beispiel der Nutzenverlust für die Gesellschaft, der sich aus Badeverboten infolge von Gewässerverschmutzung oder Landschaftsbeeinträchtigungen infolge von Elektrizitätsleitungen ergibt? Bei solchen Kosten- und Nutzenkategorien muß der Analytiker oft resignieren und sich damit begnügen, sie zu beschreiben - mit der Gefahr, daß sie sogleich vergessen werden!" (Frey 1975). Infolge der intangiblen Effekte kann der Anspruch, sämtliche Auswirkungen eines Projekts in der Kosten-Nutzen-Analyse zu berücksichtigen, nur bedingt erfüllt werden.

Durch die Entwicklung entsprechender Verfahren zur Präferenzermittlung konnten jedoch viele früher als intangibel angesehene Effekte auf die Wohlfahrt in tangible überführt werden. Zu diesen Verfahren sind zum einen die *indirekten* Methoden (Reisekostenansatz, Vermeidungskostenansatz und hedonischer Preisansatz) und zum anderen die *direkten* Methoden (Analyse der maximalen Zahlungsbereitschaft oder der minimalen Kompensationsforderung) zu zählen. Ziel ist es jeweils, die individuellen Präferenzen für ökologische Dinge zu ermitteln, für die sich aufgrund fehlender Märkte keine Nachfrage artikulieren kann (vgl. die Beiträge von Hampicke und Elsasser in diesem Band).

Total Economic Value

Ein umfassendes Konzept zur Ermittlung des ökonomischen Werts von Natur und Landschaften ist der *Total Economic Value* (TEV) (Pearce 1993: 15). Grundgedanke ist, daß der gesamte ökonomische Wert aus mehreren Bestandteile besteht. Allerdings muß beachtet

werden, daß die einzelnen Bestandteile des TEV nicht einfach aufsummiert werden können. Dabei können Trade-Off-Probleme und Doppelzählungen auftreten. Die Zusammensetzung des TEV läßt sich wie folgt beschreiben:

- TEV = [nutzungsabhängige Werte] + [nicht-nutzungsabhängige Werte]
 - = [Direkte Werte + Indirekte Werte + Optionswert] + [Existenzwert]

Direkte Werte: In diese Kategorie gehören die Beträge, die direkt über die Nutzung der Ressource gewonnen werden. So sind z.B. bestimmte Formen der Holzwirtschaft mit dem Erhalt einer Landschaft oder ein bestimmter Umfang an Fischfang mit dem Ziel des Ressourcenschutzes vereinbar. Die beim Verkauf dieses Holzes oder des Fischfangs erzielten Preise stellen nach dem TEV-Konzept einen Teil des Werts dar. Zum anderen gehört hierzu der Erlebniswert: Er resultiert daraus, daß Natur den Individuen als "Konsumgut" dient. Sie ziehen einen Nutzen daraus, eine Landschaft "erleben" zu können, Tiere und Pflanzen beobachten zu können etc.

Indirekte Werte: Hierzu zählen die ökologischen Leistungen, die durch die Ökosysteme geleistet werden. So übernehmen Überschwemmungsauen z.B. entsorgende Funktion als Nährstoffsenken und großräumige Schadstoffilter.

Tabelle 2: Total Economic Value eines Ökosystems

n	nicht-nutzungs- abhängige Werte		
(1) direkte Werte +	(2) Indirekte Werte +	(3) Optionswert +	(4) Existenzwerte
 Erholung und Gesundheit ökologische Landwirtschaft, Forstwirtschaft Einnahmen der Flußfischerei 	 Schutz von Wasserressourcen Funktion als Nährstoffsenken Einfluß auf lokales und regionales Klima 	zukünftige Nutzun- gen von (1) und (2)	 als Objekte von intrinsischen Werten, (einmalige Naturlandschaft), Verantwortung gegenüber Späteren
	mögliche ökonomisc	he Bewertungsverfahrer	1
 Marktanalyse Reisekostenansatz Hedonischer Preisansatz Contingent Valuation Method 	 vermiedene Schadenskosten Ausgaben für präventive Maßnahmen Bewertung von Veränderungen der Produktivität Wiederherstellungskosten 	Contingent Valuation Method	 Contingent Valuation Method

Quelle: Barbier (1994)

Optionswert: Der Optionswert resultiert aus der Absicht der Individuen, sich selber die spätere Nutzung einer Ressource als Möglichkeit zu erhalten, auch wenn heute noch nicht absehbar ist, ob und wann das Individuum von dieser Nutzungsmöglichkeit Gebrauch machen

wird. Er kann daher als eine Art Versicherungsprämie dafür angesehen werden, daß ein Angebot dieser Ressource auch später noch besteht, dieses Angebot ohne die Zahlung eines solchen Optionswertes aber unsicher wäre.

Existenzwert: Dieser Wert resultiert nicht aus dem Interesse, aus der Natur direkt einen Nutzen zu ziehen, wie dies vor allem beim Erlebniswert der Fall ist. Hier liegt die Wertschätzung vielmehr darin begründet, daß allein schon die Existenz bestimmter Natur- und Landschaftsgüter Nutzen für das Individuum stiftet. Ein Beispiel hierfür ist, daß Menschen sich für den Erhalt von Walen einsetzen, obwohl wahrscheinlich ist, daß der größte Teil von ihnen nie Wale selber zu Gesicht bekommen wird.

Ein Beispiel: Der ökonomische Wert der Donauauen

Im Auftrag des WWF wurde 1994 am Beijer International Institute of Ecological Economics eine Studie über den ökonomischen Wert der Donau-Auen durchgeführt. Untersucht wurden nicht nur die Donau-Auen in Deutschland, sondern für sieben weitere Anrainerländer (siehe Tabelle 3). Ausgangspunkt für die Berechnungen des ökonomischen Wertes der Donau-Auen waren die ökologischen Leistungen, die Auen an die Gesellschaft "exportieren". Aus der Vielzahl der möglichen ökologischen Leistungen haben die Autoren drei Bereiche ausgewählt, für die sie monetäre Größen ermittelten. Der Grund, sich auf die Auswahl zu beschränken, ist vor allem im Informationsproblem zu sehen, die die Bewertung dieser ökologischen Leistungen mit sich bringt. Notwendig wäre letztlich, über ein ökonomischökologisches Interdependenzmodell die Leistungen der Auen für das ökonomische System zu erfassen. Gren et al. beschränken sich daher zunächst auf die Untersuchung der Auen als

- 1. "Produktionsort" von Marktgütern (Tierfutter, Holz, Fischfang),
- 2. als Ort für Erholungsmöglichkeiten und
- 3. als alternative Umwelttechnik.

Tabelle 3: Flächen der Donau-Auen in den Anrainerländern

Land	Fläche in Hektar
Deutschland	45.662
Österreich	27.500
Slowakei	5.000
Ungarn	51.553
Kroatien	350.000
Bulgarien	80.000
Rumänien	1.028.000
Ukraine	150.00
Gesamt	1.737.715

Quelle: Gren et al. (1995: 339)

Zu 1) Die Werte von drei verschiedenen Habitaten - Wälder, Weideland, Feuchtgebiete wurden berechnet als Input für die Produktion von Marktgütern. Aufgrund fehlender allgemeiner oder partieller Gleichgewichtsmodelle wurden die Werte anhand der Marktpreise für Holzprodukte, Fisch und Tierfutter berechnet. Als Wert für Holzprodukte wurden 236 Mark ermittelt, als Wert für Fischfang 97 Mark und für Tierfutter 243 Mark. Der gesamte Wert der Auen ergibt sich dann aus dem Anteil der jeweiligen Habitate an den gesamten Auenflächen. Für die Gebiete in Deutschland und Österreich ergibt sich daraus ein Wert von 209 Mark je Hektar.

Zu 2) Die Erholungswerte der Donau-Auen wurden mit Hilfe der Reisekostenmethode bestimmt. Darin wurden zum einen nur die Kosten für die Anreise und zum anderen zusätzlich alle übrigen mit dem Aufenthalt verbundenen Kosten ermittelt. Im ersten Fall wurde ein Wert von 606 Mark pro Hektar ermittelt, im zweiten Fall steigerte sich dieser Wert auf 2.274 Mark pro Hektar. Da diese Werte für den Nationalpark bei Wien ermittelt wurden und damit nur eine begrenzte Übertragbarkeit auf alle anderen Flächen gegeben ist, haben Gren et al. vereinfachend angenommen, daß der durchschnittliche Erholungswert aller Flächen in etwa der Hälfte der in der ersten Variante errechneten Aufwendungen für die An- und Abreise entsprechen. Daraus haben sie für die Flächen in Deutschland und Österreich einen Wert von 342 Mark pro Hektar abgeleitet.

Zu 3) Die Belastung der Gewässer mit Nährstoffen kann einmal durch den Einsatz von Umwelttechnik reduziert werden, zum anderen können sie aber auch durch eine "Nutzung" der Auen reduziert werden: Eine wesentliche Leistung von Auen ist es, als Nährstoffsenken und Schadstoffilter (Nitrat, Phosphat) zu wirken. Würden diese Stoffe über den Einsatz entsprechender Umwelttechnik reduziert, dann würde ihr Einsatz Kosten verursachen. Diese Kosten können daher als Maßstab für die Bewertung der natürlichen Funktionen herangezogen werden. Gren et al. (1995) ermitteln für diese Leistung der Donau-Auen den Wert von 308 Mark als Senke für Stickstoff und den von 95 Mark als Senke für Phosphate. Dies entspricht einem Gesamtwert von 403 Mark pro Hektar Auenflächen. Für die rund 45.000 Hektar Auengebiete entlang der Donau in Deutschland ergibt sich daraus ein monetärer Wert von ca. 44. Mio. Mark (vgl. Tabelle 4).

Tabelle 4: Geschätzter Wert der Donau-Auen

	Deutschland	Österreich	Ungarn	Slowakei
Marktgüter (Holz, Fischerei, Futter)	209	209	112	112
Erholung	342	342	184	184
Nährstoffsenke	403	403	403	403
Summe	954	954	699	699
Gesamtwert (Mio. DM)	44	27	36	4

Quelle: Gren et al. (1995: 342); zwischen ECU und DM wurde ein Wechselkurs von 1,90 angenommen

Abschließend zu diesem Kapitel soll ein Überblick über die Ergebnisse weiterer Studien zur ökonomischen Bewertung von Feuchtgebieten gegeben werden. Dabei beansprucht dieser Überblick in keiner Weise, vollständig zu sein. Sowohl in Amerika, Großbritiannien und auch in vielen Ländern der Dritten Welt sind in den letzten Jahren viele Studien zum ökonomischen Wert von Feuchtgebieten erstellt worden.

Tabelle 5: Studien zur Bewertung von Feuchtgebieten

Autorin- nen	Region	bewertete ökologi- sche Leistungen	Methode	Ergebnisse (1993 in US \$)
Folke 1991	Gotland, Schweden	Nährstoffsenke, Fischfang, Wasserdargebot	indirekt	240 / ha / a
Hanley, Craig 1991	Schottland	use und non-use values	direkt	34 /ha/a
Bateman et al. 1993	East Anglia, England	Erholungswert	direkt	108 bis 226 / ha / a
Gren 1993	Stockholm, Schweden	Stickstoffsenke	indirekt	430 / ha / a
Gren 1994a	Gotland, Schweden	Sticksoffsenke, Fischfang, Wasserdargebot	indirekt und direkt	239 bis 585 / ha / a
Ungermann 1994	Nové Mlyny, Tschechien	Fort- und Landwirtschafts- produkte, Jagd	indirekt	290 /ha/a
Hampicke, Schäfer 1994	Mündungs- gebiet der Isar	Zahlungsbereitschaft für Arten- und Biotoperhalt	"Benefit Transfer"	1.000 DM ha/a
Schönbäck, Kosz, Madrei- ter 1997	Donau-Auen östlich von Wien	u.a. Zahlungsbereitschafts- analyse	direkt	47 DM pro Kopf der Bevölkerung in Österreich über 14 Jahre

Quelle: Gren, Söderqvist (1994: 28); eigene Ergänzung

Fazit

Mit den obigen Ausführungen sollte gezeigt werden, daß es zum einen durchaus Ansätze in der Ökonomie gibt, um öffentliche Güter wie Feuchtgebiete zu bewerten. Somit stehen Ansätze für die ökonomische Bewertung des Strukturziels *Schonung von Natur und Landschaft* zur Verfügung. Zum anderen sollte gezeigt werden, daß die Ansätze nicht nur theoretischer Natur sind, sondern es mittlerweile auch schon eine beträchtliche Zahl von Studien gibt, die Ergebnisse für die Bewertung vorgelegt haben. Eine derartige Bewertung wird notwendig, wenn im Falle von Nutzungskonflikten zu entscheiden ist, welche Alternative der Verwendung einer Ressource aus gesellschaftlicher Sicht vorzuziehen ist: Dies war mit den Begriffen "Schützen oder Nützen" charakterisiert worden.

Die Berücksichtigung der ökonomischen Werte von Flußauen dürfte für Kosten-Nutzen-Analysen, wie sie in der Bundesverkehrswegeplanung durchgeführt werden, von einiger Bedeutung sein. Dies gilt nicht nur für die Elbe, sondern auch für die Bewertung von Ausbauvorhaben an der Saale oder der Donau (vgl. hierzu Meyerhoff, Petschow 1997). Damit können über die ökonomische Bewertung wichtige Informationen über den von den Individuen gewünschten Umfang öffentlicher Güter gewonnen werden, die auch für ein (Forschungs-) Programm wie die Elbe-Ökologie von Bedeutung sind. So könnten entsprechende Untersuchungen im Rahmen dieses Programms z. B. Aufschluß darüber geben, welcher Umfang an Retentionsflächen von der Bevölkerung gewünscht wird und dementsprechend auch von der Umweltpolitik angestrebt werden sollte. Daß es aber Gründe gibt, nicht nur die ökonomische Bewertung zum Maßstab für Allokationsentscheidungen zu machen, sollte die Unterscheidung in primäre und sekundäre Werte verdeutlichen. Sie weisen darauf hin, daß Ökosysteme einen Beitrag zur gesellschaftlichen Wohlfahrt leisten, der durch die individuellen Präferenzen allein nicht vollständig erfaßt werden kann.

Literatur

- Barbier, E. B., Burgess, J. & Folke, C. (Hg.) (1994): Paradise Lost? The Ecological Economics of Biodiversity. London: Earthscan Publications.
- Barbier, E. B. (1994): Valuing Environmental Functions: Tropical Wetlands. Land Economics, 155-173.
- Bishop, Blöchliger, H. (1992): Der Preis des Bewahrens. Ökonomie des Natur- und Landschaftschutzes. Chur/Zürich
- Bundesminister für Verkehr (Hg.) (1993): Gesamtwirtschaftliche Bewertung von Verkehrswegeinvestitionen. Bewertungsverfahren für den Bundesverkehrswegeplan 1992. Bonn
- Bürger, A. (1994): Situation, Leistung und Entwicklungsmöglichkeiten naturnaher Auwälder und ihre Standorte. In: Bayrisches Landesamt für Umweltschutz (Hg.): Landschaftsentwicklung in Flußgebieten. München, 50 - 64
- Colditz, G. (1994): Auen, Moore, Feuchtwiesen. Gefährdung und Schutz von Feuchtgebieten. Birkhäuser.
- Frey, R.L. (1975): Grundsätzliches zur Nutzen-Kosten-Analyse. In: Vischer, D. (Hg.): Nutzen-Kosten-Analysen in der Wasserwirtschaft. Zürich
- Hanley, N., Spash, C.L. (1993): Cost-Benefit-Analysis and the Environment, Aldershot
- Hampicke, U. (1991): Naturschutz-Ökonomie. Ulmer: Stuttgart
- Hanley, N. (1992): Are There Environmental Limits to Cost Benefit Analysis? In: Environmental and Ressource Economics. 33-59
- Hanusch, H. (1994): Nutzen-Kosten-Analysen. München 1987.
- Meyerhoff, J., Petschow, U., Soete, B. (1995): Die Wirtschaftlichkeit des Verkehrsprojektes Deutsche Einheit Nr. 17. Eine Untersuchung unter besonderer Berücksichtigung der Kosten-Nutzen-Analyse der Bundesverkehrswegeplanung und ökologischer Folgekosten. Schriftenreihe des Instituts für ökologische Wirtschaftsforschung 91. Berlin
- Meyerhoff, J., Petschow, U. (1997): Donauausbau zwischen Straubing und Vilshofen. Eine Bewertung aus ökonomischer Sicht, insbesondere der Naturschutz-Ökonomie. Stellungnahme im Auftrag des BUND Naturschutz Bayern e.V.. Berlin
- Moosmayer, E. (1994): Verkehrswege, Raumnutzung, Sozialprodukt und Staatshaushalt: Zum ökonomietheoretischen Horizont infrastruktureller Verbesserungen für Beförderungsprozesse.
 Zeitschrift für Verkehrswissenschaft 4, 276-297.

- Mühlenkamp, H. (1994): Kosten-Nutzen-Analysen. München
- Pearce, D.W., Turner., K. (1990): Economics of Natural Resources and the Environment. New York: Harvester Wheatsheaf.
- Perrings, C. (1995): Economic Values of Biodiversity. Beijer Reprint Series No. 58. Stockholm
- Pommerehne, W., Römer, A. (1992): Ansätze zur Erfassung der Präferenzen für öffentliche Güter.
 In: Jahrbuch für Sozialwissenschaften, 43, S. 171-210.
- Porter, R. (1982): The new approach to wilderness preservation through benefit cost analysis. In: Journal of Environmental Economics and Management, 59-80.

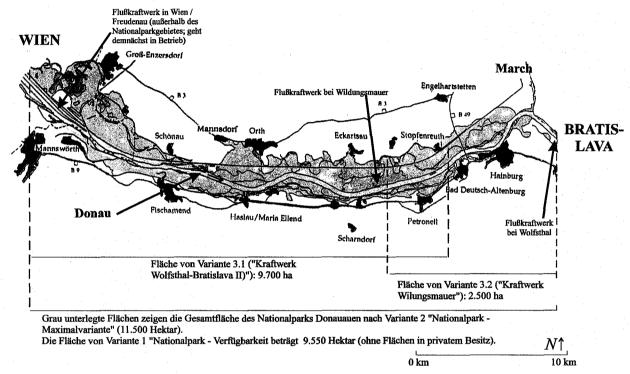
Michael Kosz

Kosten und Nutzen eines Nationalparks Donauauen

Ergebnisse der "Kosten-Nutzen-Analyse ausgewählter Varianten eines Nationalparks Donauauen" und Einschätzung der (umwelt-)politischen Relevanz von derartigen Analysen

Am 27. Oktober 1996 wurde von den Landeshauptleuten der Bundesländer Wien und Niederösterreich sowie vom Bundesminister für Umwelt ein Staatsvertrag über die Einrichtung eines Nationalparks Donauauen unterzeichnet. Dies geschah an einem historischen Ort, nämlich in Hainburg an der Donau. "Hainburg" ist ein Schlagwort geworden für eine der wesentlichen Gründungsstätten der Umweltbewegung in Österreich: Im Dezember 1984 wurde von umweltbewegten Menschen die "Stopfenreuther Au" auf den anderen Seite der Donau "besetzt", um das Kraftwerk "Hainburg" zu verhindern und die "letzte unberührte Aulandschaft ihrer Art in Europa" zu schützen. Nach mehr als zwei Jahrzehnten der Diskussiondie ersten Planungsarbeiten für den Schutz der Aulandschaft stammen aus den frühen 70er Jahren - wurde eine Planungsgesellschaft gegründet mit dem Auftrag, die Einrichtung eines Nationalparks Donauauen zu prüfen. Im Planungsauftrag war die Analyse auch der wirtschaftlichen Aspekte des Nationalparks enthalten. Auf Basis dieser Grundlage wurde eine "Kosten-Nutzen-Analyse ausgewählter Varianten eines Nationalparks Donauauen" beauftragt, deren Ergebnisse an dieser Stelle kurz vorgestellt werden sollen.

Untersuchte Varianten und methodische Vorgangsweise⁶


Auf Basis von Entscheidungen des Wissenschaftlichen Beirats der Nationalparkplanung wurden folgende Gestaltungsvarianten des österreichischen Donauabschnitts östlich von Wien untersucht: In *Variante 1 "Nationalpark - Verfügbarkeit"* wird ein Nationalpark auf den Flächen, die sich derzeit in öffentlichem Eigentum befinden, eingerichtet (9.300 ha). Es werden keine flußbaulichen Maßnahmen gesetzt, die der Erosion der Donausohle entgegenwirken⁷. Die freie Fließstrecke bleibt auf der gesamten Länge von 47 km erhalten, ebenso die

⁶ Die Kapitel 2 und 3 wurden teilweise und in veränderter Form der Publikation der Langfassung der Studie (W. Schönbäck et al., 1997) entnommen.

Die Sohlerosion (Sohleeintiefung) der Donau, verursacht durch die Donauregulierung im 19. Jhdt., durch Baggerungen zugunsten der Schiffahrt und durch den Bau von stromaufwärts gelegenen Flußkraftwerken, welche den Geschiebetrieb unterbinden, wird zunehmend zu einem ernsten Problem für die Donauauen. Durch die per Bescheid vorgeschriebene permanente Geschiebezugabe auf der Unterwasserstrecke des derzeit (1997) in Bau befindlichen Kraftwerkes Freudenau (Wien) zur Sicherung der Sohle auf einer Länge von 11 km während der gesamten Lebensdauer dieses Kraftwerks ist zu erwarten, daß die Bestandssohle erhalten werden wird. Unter der Annahme, daß diese Auflage von "Donaukraft" (Betreiberin des Kraftwerkes Freudenau) eingehalten wird, kommt es zu einer Stabilisierung der Wasserspiegellagen. Die permanente Geschiebezugabe wird in Variante 1 die Eintiefungstendenz auch unterhalb der Unterwasserstrecke des Kraftwerkes Freudenau

Fahrwassertiefe von 22,5 dm bei Regulierungsniederwasser (RNW). In *Variante 2 "National-park - Maximalvariante"* wird ein Nationalpark auch auf Flächen, die sich in privatem Eigentum befinden, errichtet (gesamte Fläche 11.500 ha). Umfangreiche flußbauliche Maßnahmen, v. a. die Sohlerollierung durch Grobkorngeschiebezugabe (Korngrößen bis zu 18 cm, "Sohlepflasterung"), sollen die weitere Eintiefung der Donau verhindern. Es soll durch die Niederwasserregulierung eine durchgängige Fahrwassertiefe von mindestens 27 dm erreicht werden⁸.

Abbildung 1: Die Donauauen zwischen Wien und Bratislava und vorgeschlagene Kraftwerksstandorte

Quelle: Eigene Darstellung nach "Donaukraft" (1989) und "Nationalparkplanung Donau-Auen" (1994)

In den Varianten 3.1 "Kraftwerk Wolfsthal-Bratislava II" und 3.2 "Kraftwerk Wildungsmauer" wird jeweils ein Stauwerk, das der Stromerzeugung und der Schiffahrt dient, errichtet. Dabei muß ein unterschiedlich großer Teil des Donauufers mit dem Charakter einer bislang freien Fließstrecke durch Steinschüttungen und Dichtungswände zur Erzeugung eines Stauraumes aufgehöht und Aufläche geopfert werden. Die verbleibende Nationalparkfläche beträgt 9.700 ha (Variante 3.1) bzw. 2.700 ha (Variante 3.2). Flußbauliche Maßnahmen, wie die Stabilisierung der Donausohle durch Sohlerollierung und die Niederwasserregulierung auf dem ausgewählterjeweiligen Streckenabschnitt außerhalb des Stauraums, sind auch in diesen Varianten vorgesehen. Abbildung 1 bietet einen Überblick über die Auenlandschaft zwischen

vermindern (Austragung des zusätzlichen Geschiebes durch die Schleppspannung des Stroms).

Alternativ dazu wird in der Kosten-Nutzen-Analyse untersucht, welche volkswirtschaftliche Effizienz die Verbesserung der Schiffahrtsverhältnisse durch "schlanke" flußbauliche Maßnahmen hat. Dargestellt wird dies im "Nebenszenarium Schiffahrtsmemorandum", welches sich nachträglich als das relevante Szenarium herausstellte, da das flußbauliche Gesamtkonzept mit Sohlerollierung nach Expertenmeinung schiffahrtstechnisch nicht machbar sei.

Wien und Bratislava, über die vorgesehenen Nationalparkvarianten und die Standorte möglicher Flußkraftwerke. Die bei Durchführung der Studie gewählte methodische Vorgehensweise ist Abbildung 2 zu entnehmen. Die in Abbildung 2 kurz dargestellten Analyseschritte bauen auf einer Vielzahl empirisch abgesicherter Variablen auf. Tabelle 1 zeigt die Eingangsvariable der Kosten-Nutzen-Analyse.

Hauptergebnisse der Kosten-Nutzen-Analyse

Der Kostenbarwert des flußbaulichen Gesamtkonzepts (Errichtung und Betrieb) wurde bei der in Variante 2 "Nationalpark - Maximalvariante" bestehenden freien Fließstrecke (50 km)⁹ mit 3,7 Mrd. S ermittelt. Die Kosten der beim Bau eines der beiden Kraftwerke verbleibenden notwendigen Sohlerollierung in den Varianten 3.1 und 3.2 sind entsprechend der kürzeren freien Fließstrecken geringer. Das Konzept der Sohlerollierung wurde mittlerweile fallen gelassen, da nach Expertenmeinung die Sohlerollierung schiffahrtstechnisch nicht machbar ist. Anstatt dessen wurde im "Nebenszenarium Schiffahrtsmemorandum² ein alternatives Maßnahmenpaket untersucht, das bei relativ geringen Investitionskosten (rund 150 Mio. S) die Schiffahrtsverhältnisse bei gleichzeitig verringerter Sohlerosion ebenfalls verbessern könnte. Die Kosten der Kraftwerksvarianten werden aktuellen Unterlagen von "Donaukraft" entnommen. Der Nutzen der Stromerzeugung wird im Hauptszenarium in Höhe der Ersparnisse an Investitions-, Brennstoff- und sonstigen Betriebs- sowie alternativen Lagerkosten fossiler Brennstoffe für den Krisenfall und Emissionskosten kalorischer Ersatzkraftwerke angesetzt.

Aus energiewirtschaftlicher Sicht allein erweist sich die Variante 3.1 "Kraftwerk Wolfsthal-Bratislava II" als wesentlich ungünstiger als Variante 3.2 "Kraftwerk Wildungsmauer": In Variante 3.1 steht einem Barwert der Errichtungs- und aller künftigen Betriebskosten des Flußkraftwerkes ("Kostenbarwert") von 11.352 Mio. S ein Barwert der Ersparnisse an alternativen Errichtungs-, Betriebs- und Emissionskosten sowie alternativen Lagerkosten fossiler Brennstoffe für den Krisenfall für ein kalorisches Ersatzkraftwerk ("Nutzenbarwert") von 16.640 Mio. S gegenüber. Variante 3.2 erreicht bei einem Kostenbarwert von 18.217 Mio. S einen Nutzenbarwert von 44.620 Mio. S.

Die Länge der Fließstrecke auf österreichischem Gebiet beträgt 47 km (3 km befinden sich auf slowakischem Gebiet). Es werden die Kosten der gesamten zu stabilisierenden Flußstrecke in der Kosten-Nutzen-Analyse angesetzt, da es nicht sinnvoll erscheint, eine Sohlerollierung nur auf 47 km Flußstrecke durchzuführen, und davon auszugehen ist, daß die fehlenden 3 km ebenfalls von Österreich zu finanzieren sein werden.

Abbildung 2: Methodische Vorgehensweise der Kosten-Nutzen-Analyse

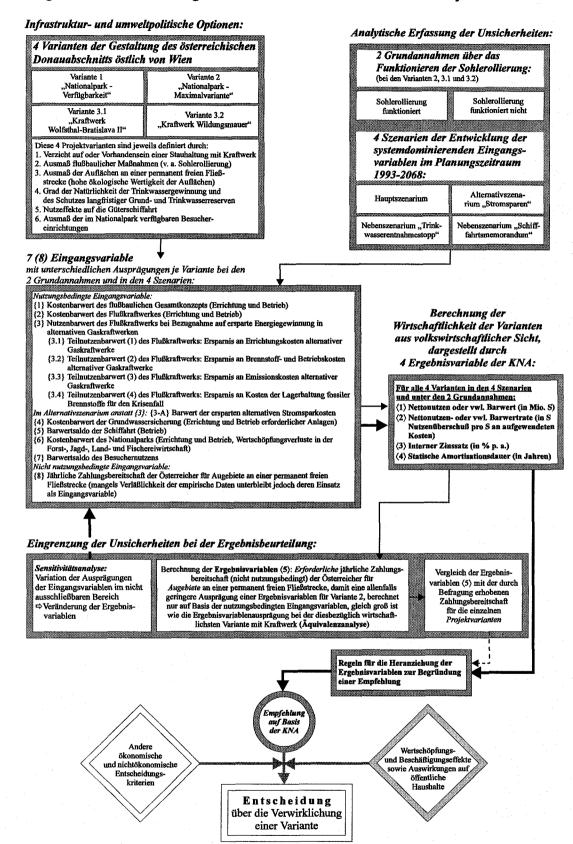


Tabelle 1: Eingangsvariable und deren Komponenten in der Kosten-Nutzen-Analyse ausgewählter Varianten eines Nationalparks Donauauen

	Eingangsvariablenkomponente (jährliche Werte)	zusammen	svariable (als Barwert der pro Jahr gefaßten Werte zusammengehöriger variablenkomponenten dargestellt)
	Investitionskosten des flußbaulichen Gesamtkon-	Eingangs	variable {1}: Kostenbarwert des fluß-
	zepts Betriebskosten des flußbaulichen Gesamtkonzepts		Gesamtkonzepts (Errichtung und Be- trieb)
	Externe Effekte des flußbaulichen Gesamtkon- zepts		
[4]	Vor-, Errichtungs- und Reinvestitionskosten des Flußkraftwerks		variable {2}: Kostenbarwert des Fluß- werks (Errichtung und Betrieb)
[5]	Kapitalbeschaffungskosten des Flußkraftwerks (2% der Investitionssumme)		
[6]	Externe Kosten der Flußkraftwerkserrichtung und der Reinvestitionen		
	Betriebs- und Instandhaltungskosten des Fluß- kraftwerks		
[8]	Vermiedene (externe und interne) Errichtungs- inkl. Kapitalbeschaffungskosten alternativer Gas- kraftwerke	Eingangs- variable	Eingangsvariable {3.1}: Teilnutzen- barwert des Flußkraftwerks (1): Er- sparnis an Errichtungskosten alterna- tiver Gaskraftwerke
[9]	Vermiedene Brennstoff- und Betriebskosten alter- nativer Gaskraftwerke	{3}: Nutzenbar- wert des Flußkraft- werks bei	Eingangsvariable {3.2}: Teilnutzen- barwert des Flußkraftwerks (2): Er- sparnis an Brennstoff- und sonstigen Betriebskosten alternativer Gaskraft- werke
[10]	Vermiedene Emissionskosten alternativer Gas- kraftwerke	Bezugnah- me auf er- sparte Energiege- winnung in	Eingangsvariable {3.3}: Teilnutzen- barwert des Flußkraftwerks (3): Er- sparnis an Emissionskosten alternati- ver Gaskraftwerke
[11]	Vermiedene Kosten der Lagerhaltung fossiler Brennstoffe für den Krisenfall	alternativen Gaskraft- werken	Eingangsvariable {3.4}: Teilnutzen- barwert des Flußkraftwerks (4): Er- sparnis an Kosten der Lagerhaltung fossiler Brennstoffe für den Krisenfall
[12]	Technologische Kosten des Stromsparens im Ausmaß des zu ersetzenden Regelarbeitsvermö- gens des Flußkraftwerks	werks bei B	zu {3} ^a : Nutzenbarwert des Flußkraft- ezugnahme auf verstärktes Stromspa- Eingangsvariable {3-A}: Barwert
	Administrative Kosten des Stromsparens im Ausmaß des zu ersetzenden Regelarbeitsvermögens des Flußkraftwerks		arten alternativen Stromsparkosten
	Investitionskosten der Grundwassersicherung Betriebskosten der Grundwassersicherung		ariable {4}: Kostenbarwert der Grund- erung (Errichtung und Betrieb erforder- licher Anlagen)
[15a]	Wertschöpfungsverluste durch Außernutzungs- stellung von Entnahmekapazitäten für Trinkwas- ser ^b	schöpfungs	Zusätzlich ^c : ariable {4a}: Kostenbarwert der Wert- verluste durch Außernutzungsstellung Intnahmekapazitäten für Trinkw.
	Zusatzkosten im Bereich der Schiffahrt Nutzeffekte der Schiffahrt		riable {5}: Barwertsaldo der Schiffahrt (Betrieb)

	[18]	Errichtungskosten	des	Nationalparks
--	------	-------------------	-----	----------------------

- [19] Betriebskosten des Nationalparks
- [20] Wertschöpfungsverluste in der Forst-, Jagd-,
- [21] Land- und Fischereiwirtschaft durch den Betrieb des Nationalparks^d Kosteneinsparungen durch den Betrieb des Nationalparks
- [22] Erlebniswert österreichischer Besucher im Natio-
- [23] nalpark
 Wertschöpfungsgewinne durch den Besuch des
 Nationalparks durch ausländische Besucher
- [24] Benutzungsunabhängiger Wert der Existenz des Nationalparks (Nichtnutzerwert) aus Sicht der befragten Österreicher = Zahlungsbereitschaft der Österreicher für Augebiete an einer permanent freien Fließstrecke

Eingangsvariable (6): Kostenbarwert des Nationalparks (Errichtungs- und Betriebskosten, Wertschöpfungsverluste^e in der Forst-, Jagd-, Landund Fischereiwirtschaft)

Eingangsvariable {7}: Barwertsaldo des Besuchernutzens

Nicht nutzungsbedingte Eingangsvariable {8}: Zahlungsbereitschaft der Österreicher für Augebiete an einer permanent freien Fließstrecke

*Saldo der Eingangsvariablenkomponenten [20] und [21].

Quelle: W. Schönbäck et al., 1997.

Der Schutz der *Trinkwasserreserven* ist ein wichtiges Ziel, das bei Schaffung eines Nationalparks zu beachten ist. Für die gesamte Nationalparkfläche wird eine mögliche Trinkwasserentnahmemenge von rund 1,5 m³/sec angenommen, wobei ohne endgültige Klärung angenommen wurde, daß dies nationalparkkonform ist. Für die Kraftwerksvarianten werden Kosten der Sicherung der Wasserqualität ermittelt. Der Kostenbarwert dieser Grundwassersicherung beträgt 611 Mio. S (Variante 3.1) bzw. 1.440 Mio. S (Variante 3.2).

Der Nutzen der Varianten für die *Schiffahrt* wird anhand aktueller Verkehrsprognosen und der unter bestimmten Bedingungen (Beseitigung von Seichtstellen im benachbarten Ausland und andere Maßnahmen zur Attraktivierung des Schiffstransportes) zu erwartenden Verlagerungen des Transportes von Gütern zum Schiff bewertet. Der Nutzen der Varianten 2, 3.1 und 3.2 für die Schiffahrt ist unter der Grundannahme des Funktionierens der Sohlerollierung etwa gleich und zu Beginn der vollen Wirksamkeit der Maßnahmen mit rund 350 bis 420 Mio. S p. a. anzunehmen. Der gesamte Nutzenbarwert bzw., wo auch Kosten auftreten, Barwertsaldo, liegt zwischen 15.900 bis 17.400 Mio. S.

Der Kostenbarwert der Errichtung des Nationalparks beträgt in der Variante 2 "Nationalpark - Maximalvariante" 1,6 Mrd. S.

Der Erlebniswert (Erholungs- und sonstiger Freizeitnutzen) wird aufgrund einer vom Institut Fessel & GfK durchgeführten Repräsentativbefragung abgeschätzt. Der Wert eines

^aNur im Alternativszenarium "Stromsparen".

^bGegen die Einbeziehung der Eingangsvariablenkomponente [15a] kann eingewendet werden, daß es sich dabei um keine "reale" Kostengröße im Sinne der Kosten-Nutzen-Analyse handelt, sondern um eine Wertschöpfungseinbuße, die durch eine gleich große Wertschöpfungssteigerung anderswo im Inland kompensiert wird und die deshalb als bloßer Umverteilungseffekt auszuscheiden ist. Das Nebenszenarium "Trinkwasserentnahmestopp" dient jedoch dazu, künftige Extremsituationen einer hypothetischen Wasserknappheit in bereits jetzt niederschlagsärmeren und landwirtschaftlich intensiv genutzten Gebieten außerhalb des Nationalparkgebiets mit eventuellen Schwierigkeiten bei der Erschließung neuer Wasserquellen darzustellen. Deshalb werden die Wertschöpfungseinbußen als reale Kostengröße angenommen.

^cNur im Nebenszenarium "Trinkwasserentnahmestopp".

^dDie Einbeziehung der Eingangsvarlablenkomponente [20] in die Kosten-Nutzen-Analyse als reale Kostengröße könnte mit dem Argument beeinsprucht werden, so daß zumindest die Wertschöpfungsverluste in der Land- und Forstwirtschaft entweder nur die Verringerung bisheriger Überschußproduktion bedeuten oder bisherige Wertschöpfung auf Betriebsflächen außerhalb des Nationalparkgebiets verlagert wird. Doch besteht diese Verlagerungsmöglichkeit für die jagd- und forstwirtschaftlichen Wertschöpfungsvorgänge in viel geringerem Ausmaß. Auch wenn der eine oder der andere Umstand oder beide gleichzeitig zutreffen, beträgt der Grundstückswert nicht Null. Anstelle des Grundstückswertes als einmalige Kostengröße werden die gesamten (jährlichen) Wertschöpfungsverluste als Opportunitätskosten der Außernutzungsstellung des Produktionsfaktors "Boden" und der Widmung der Grundstücke (überwiegend oder zur Gänze in öffentlichem Eigentum) für den Nationalpark und damit als reale Kosten im Sinne der Kosten-Nutzen-Analyse angesehen.

Theoretisch ist die Eingangsvariablenkomponente [20] um die Eingangsvariablenkomponente [20a] "Kosten der Einschränkung der Nutzungsmöglichkeiten der das Gebiet des Nationalparks nutzenden Anrainer und Kosten zur Steigerung der Akzeptanz des Nationalparks durch die Bevölkerung in den Anrainergemeinden" zu ergänzen (wurde empirisch nicht untersucht).

Besuches wurde in Höhe des als akzeptabel angegebenen (hypothetischen) Eintrittspreises angesetzt (nach Prüfung mit Hilfe alternativer Bewertungsansätze). Der Barwertsaldo des Besuchernutzens beträgt für Variante 2 bei zu erwartenden 1,1 Mio. Besuchern pro Jahr (210.000 Besucher mehr als im Planungsnullfall) rund 783 Mio. S, bei Variante 3.1 rund - 1.275 Mio. S und bei Variante 3.2 rund -3.000 Mio. S (Verluste infolge Verringerung der Aufläche an permanent freier Fließstrecke).

Die Reisekostenmethode ergab den Reiseaufwand, den Besucher/innen auf sich nehmen, um das Nationalparkgebiet zu besuchen. Grundüberlegung dabei ist, daß die Reise dann nicht getätigt worden wäre, wenn der "Erholungswert" geringer als der Reiseaufwand, um in das Gebiet zu gelangen, gewesen wäre. Festgestellt wurde, daß pro Person ein durchschnittlicher Reiseaufwand von rund 18 S pro Besuch entsteht (dies ergibt einen insgesamten "Erlebniswert" des Nationalparkgebietes von rund 38,5 Mjo. Sp. a.). Werden nicht nur die Reiseaufwendungen, sondern der gesamte mit dem Besuch verbundene Aufwand herangezogen, so ergibt sich ein Pro-Kopf-Aufwand von fast 165 S pro Besuch (gesamter "Erlebniswert" des Nationalparkgebietes: 181,1 Mio. S p. a.). Beiden Methoden ist gemeinsam, daß die Abgrenzungen zwischen jenem Aufwand, der nationalparkspezifisch ist, und jenem, der auch ohne den Nationalparkbesuch getätigt worden wäre, sehr problematisch ist. Eine österreichweit durchgeführte Repräsentativumfrage nach der Zahlungsbereitschaft für einen Eintrittspreis ergab einen fiktiven (hypothetischen) Wert¹⁰ von rund 80 S/Person und Besuch. Dieser Betrag wurde in weiterer Folge für die Gesamtanalyse herangezogen, da er jene Zahlungsbereitschaft darstellt, die direkt mit dem Erholungs- und Freizeitsnutzen zusammenhängt, und von den Befragten die einzelnen Varianten ("reiner" Nationalpark; Varianten mit Kraftwerk) auch unterschiedlich eingeschätzt wurden.

Zur Messung des Existenz-, Options- und Vermächtniswertes des Nationalparks DonauAuen (Erhalt der Augebiete) wurde eine repräsentative, österreichweite Zahlungsbereitschaftsbefragung durchgeführt. Für die größte Nationalparkvariante ergab sich eine Zahlungsbereitschaft (pro Kopf und Jahr) von rund 920 S bei Einbeziehung nur jener Befragten,
die eine Zahlungsbereitschaft geäußert haben. Bei Durchschnittsbildung über alle Befragten
(also auch jener, die keine Zahlungsbereitschaft geäußert haben) ergibt sich ein jährlicher
Betrag von rund 330 S. Am wichtigsten ist den Befragten der Existenzwert (Wert der Natur
"an sich") mit 50 % der Zahlungsbereitschaft, gefolgt vom Vermächtniswert (Erhalt der Natur
für zukünftige Generationen; 37 %) und dem Optionswert (Erhalt der Natur für zukünftige
Nutzung durch die/den Befragten selbst; 13 %). Bei Annahme einer unendlich langen Planungsperiode beträgt der Gegenwartswert des Nationalparks unabhängig von menschlicher
Nutzung ("total economic value") bei einem Zinssatz von 2 % p. a. rund 110 Mrd. S.

Die durchgeführte Kontingenzbefragung zeigte, daß die Zahlungsbereitschaft neben anderen Faktoren signifikant vom Einkommen der Befragten abhängt. Je höher das Einkommen, desto höher auch die geäußerte Zahlungsbereitschaft. Dies verdeutlicht ein wesentliches Problem der Kosten-Nutzen-Analyse, welche Verteilungsprobleme konzeptionell außer

¹⁰ Da aufgrund der räumlichen Struktur des Gebietes und der Vielzahl an Eintrittsmöglichkeiten kein Eintrittspreis erhoben wird und auch politisch ein Eintrittspreis nicht durchsetzbar und wünschbar ist, handelt es sich lediglich um die Zahlungsbereitschaft für einen hypothetischen Eintrittspreis.

Acht läßt, obwohl die Verteilungssituation in einer Gesellschaft selbst ein öffentliches Gut darstellen kann. Auf Verteilungsprobleme konnte jedoch in der vorliegenden Kosten-Nutzen-Analyse nicht eingegangen werden, was einen Schwachpunkt darstellt. Die Zusammenführung der einzelnen Eingangsvariablen unter Ausblendung der Zahlungsbereitschaft für Augebiet an einer freien Fließstrecke führt zu Ergebnissen der Kosten-Nutzen-Analyse, welche in Tabelle 2 dokumentiert sind.

Tabelle 2: Ergebnisse der Kosten-Nutzen-Analyse der Gestaltungsvarianten des österreichischen Donauabschnittes östlich von Wien auf Basis der nutzungsbedingten Eingangsvariablen im Nebenszenarium "Schiffahrtsmemorandum² (Planungsperiode 1993-2068, alle Werte real, Preisbasis 1993)

		Var. 1	Var. 2	Var. 3.1	Var. 3.2
Nebenszenarium "Schiffahrts-	$\langle 1 \rangle$	7.153	6.954	9.532	28.888
memorandum ² : wie Hauptszenarium,	(2)	2,52	2,29	0,63	1,32
jedoch 1. bei Definition der Var. 1, die	(3)	19,88%	18,90%	4,87%	6,78%
dem Schiffahrtsmemorandum ent- spricht		9,1	9,3	28,1	22,1
und 2. bei Vergleich der einzelnen Varianten mit einem entsprechend	(5)		63 / - / -	·	
geänderten Planungsnullfall d					

Ergebnisvariable:

1): Barwert (in Mio. S), realer Diskontierungszinssatz 2 % p. a. 2): Barwertrate.

Interner Zinssatz (in % p. a.).

Volkswirtschaftliche Amortisationsdauer (in Jahren).

(4). Volkswirtschaftliche Amortisationsdauer (in Jahren).
(5): Durchschnittliches jährliches Zahlungsbereitschaftserfordernis [in S] der Österreicher (>14 Jahre) für Augebiete an einer permanent freien Fließstrecke zur Erreichung eines Barwertes (eines internen Zinssatzes bzw. einer Barwertrate) der Variante 2, der/die gleich groß ist wie jener der wirtschaftlichsten Variante mit Kraftwerk.

Gestaltungsvarianten:

Variante 1: "Nationalpark - Verfügbarkeit" (unterliegt nicht der Grundannahme über das Funktionieren der Sohlerollierung)

Variante 2: "Nationalpark - Maximalvariante"

Variante 3.1: "Kraftwerk Wolfsthal-Bratislava II"

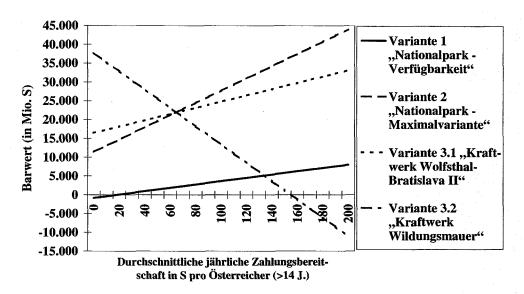
Variante 3.2: "Kraftwerk Wildungsmauer"

Quelle: W. Schönbäck et al., 1997.

Im Nebenszenarium "Schiffahrtsmemorandum² beträgt der Barwert der Variante 1 7.153 Mio. S. Variante 2 erzielt den geringsten Barwert von 6.952 Mio. S. Die Varianten mit Kraftwerk weisen (wie im Hauptszenarium, welches hier aber nicht dargestellt wird) jeweils größere Barwerte auf, insbesondere Variante 3.2 mit 28.888 Mio. S (eine allfällige nicht nutzungsbedingte Zahlungsbereitschaft für Augebiete an einer permanent freien Fließstrecke ist hierbei noch nicht berücksichtigt).

Ein gänzlich anderes Bild zeigt sich, wenn die Barwertraten bzw. internen Zinssätze der Gestaltungsvarianten zur Bildung einer Rangfolge herangezogen werden: Die höchste Barwertrate und den höchsten internen Zinssatz erreicht die Variante 1 (2,52 bzw. 19,88 %), da dem in vergleichsweise bescheidenem Umfang einzusetzenden Kapital (Kosten der permanenten Geschiebezugabe und der Umsetzung des Schifffahrtsmemorandums) relativ dazu

hohe Nutzeffekte aus der Verbesserung der Schiffahrtsbedingungen gegenüberstehen¹¹. Ohne nennenswerten Abstand folgt Variante 2 (2,29 bzw. 18,90 %). Die Varianten mit Kraftwerk rangieren weit abgeschlagen.


Allerdings besteht bezüglich der Superiorität der Varianten 1 (und 2) eine Unsicherheit: Wahrscheinlich wird bei Vergrößerung der Fahrwassertiefe von 22,5 auf 25 dm bei RNW und permanenter Geschiebezugabe der notwendige Erhaltungsaufwand größer sein als im Planungsnullfall bei 22,5 dm. Die Erhaltungskosten der freien Fließstrecke betrugen im Jahr 1993 36,4 Mio. S (als Bestandteil des Planungsnullfalls definiert), die Kosten der permanenten Geschiebezugabe nach Fertigstellung des Kraftwerks Freudenau durch "Donaukraft" belaufen sich auf rund 30,0 Mio. S pro Jahr (als Bestandteil der Variante 1 definiert). Erst wenn die *zusätzlichen* Erhaltungskosten (der eventuell weiteren notwendigen Maßnahmen zur Sohlestabilisierung auf der freien Fließstrecke) 115 Mio. S pro Jahr betragen würden, hätte die Variante 1 den gleichen internen Zinssatz wie die wirtschaftlichste Variante mit Kraftwerk (Variante 3.2) (7,24 %). Das realistischerweise zu erwartende Ausmaß der zusätzlichen Erhaltungskosten kann im Rahmen der vorliegenden Studie nicht abgeschätzt werden.

Zusammenfassend läßt sich zunächst festhalten: Je nach Heranziehung einer Ergebnisvariable sind die einzelnen Varianten zu bevorzugen; der "Wert der Natur" ist hierbei aber noch nicht berücksichtigt. Im Rahmen des Hauptszenariums wurde berechnet, wie hoch diese Zahlungsbereitschaft sein müßte, damit die Variante 2 "Nationalpark - Maximalvariante" bezüglich jeweils einer Ergebnisvariablen gleichwertig mit der volkswirtschaftlich besten Variante mit Kraftwerk (Variante 3.2) ist (Äquivalenzanalyse). Stellt man den Kapitalwert (Nettonutzen) in Abhängigkeit unterschiedlicher Niveaus der Zahlungsbereitschaft dar, so ergibt sich folgendes Bild (Abbildung 3).

Wie aus der Abbildung hervorgeht, erreicht die Variante 2 ab einer Zahlungsbereitschaft von rund 64 S einen höheren Barwert als die Variante 3.2 (mit Kraftwerk). Da die im Rahmen der Kosten-Nutzen-Analyse durchgeführte Kontingenzbefragung eine wesentlich höhere Zahlungsbereitschaft erbrachte (durchschnittlich 414 S pro Person und Jahr), ist nach Ansicht des Autors dadurch ein argumentativ starker Beleg für die Superiorität der Nationalparkvarianten ohne Kraftwerk gegeben (zur detaillierten statistisch-ökonomischen Auswertung der Befragung siehe M. Kosz, 1996).

Am 27. Oktober 1996 wurde vom Bundesminister für Umwelt, Jugend und Familie und von den Landeshauptleuten Wiens und Niederösterreichs der Nationalpark Donauauen bei rechtlicher Verankerung wesentlicher Elemente der in dieser Kosten-Nutzen-Analyse untersuchten Variante 1 durch Unterzeichnung eines entsprechenden Staatsvertrages nach Art. 15a B-VG eingerichtet. Auf welche Weise die nach wie vor fortschreitende Sohleeintiefung gestoppt werden soll, war bei dieser Feierlichkeit aber kein öffentliches Thema.

Abbildung 3: Abhängigkeit der Barwerte der einzelnen Varianten im (in diesem Beitrag nicht weiter ausgeführten) Hauptszenarium von der Zahlungsbereitschaft der Österreicher/innen für Augebiete an permanent freier Fließstrecke

Quelle: W. Schönbäck et al., 1997.

Politische Relevanz von Kosten-Nutzen-Analysen¹²

Als Ökonom bin ich abseits der ökonomischen Theorie über soziale Wohlfahrtsfunktionen, Indifferenzkurven und Konsumentenrenten mit einer teilweise heftigen Ablehnung ökonomischer Methoden der Umweltplanung, wie sie z. B. die Kosten-Nutzen-Analyse darstellt, durch Planer/innen, Ökolog/inn/en und Entscheidungsträger/inn/en konfrontiert. Darüber hinaus ist das Instrument der Kontingenzbefragung und das Konzept der Zahlungsbereitschaft Nicht-Ökonom/inn/en kaum vermittelbar, da - nicht nur aus Sicht von Nicht-Ökonom/inn/en - die verwendeten Denkkategorien oftmals als abstrakt und fernab der Realität stehend empfunden werden. Dies zeigte sich auch bei unserer "Donauauen-Studie", welche in den Kapitel 2 und 3 kurz referiert wurde.

Die Studie, die in Konkurrenz zu anderen Anbietern, welche multikriterielle Bewertungsverfahren (z. B. Nutzwertanalyse) durchführen wollten, stand, wurde nach meinem Erleben von einer Gruppe von Ministerien aus dem Grund forciert, weil die Durchführung einer Kosten-Nutzen-Analyse offenbar in den Augen einiger Entscheidungsträger eher eine Lösung mit Errichtung eines Flußkraftwerkes begünstigte. Ein "reiner" Nationalpark könne volkswirtschaftlich nur schlechter abschneiden, da ja kein Strom produziert würde, keine Wertschöpfung und Beschäftigung entstehe und auch sonst nicht "produktiv" sei. Sehr bald wurden diese Erwartungen jedoch durch unser Projektteam zerstört, indem wir versuchten, uns

¹² Im folgenden möchte ich meine persönliche Einschätzung aus meinen beruflichen Erfahrungen kurz reflektieren, ohne den Anspruch zu erheben, mich auf objektivierte Datengrundlagen stützen zu können.

von keiner Seite vereinnahmen zu lassen. Dies gelang insofern, als wir unsere Unabhängigkeit schlußendlich auch dadurch unter Beweis stellten, daß wir im wesentlichen von allen respektiert wurden und die Drucklegung der Studie durch den unabhängigen Fonds zur Förderung der wissenschaftlichen Forschung in Wien maßgeblich unterstützt wurde.

Die Relevanz unserer Analyse im Planungs- und Entscheidungsprozeß schätze ich persönlich als eher ungeordnet ein. Obgleich die Studie die Errichtung eines Nationalparks ohne Kraftwerk als volkswirtschaftlich sinnvoller erscheinen läßt, wurde das Argument der ökonomischen Effizienz in der öffentlichen Diskussion kaum hervorgehoben. Interessanterweise gilt dies für Befürworter/innen sowohl von Nationalpark als auch Kraftwerk: Für beide Gruppen hätte sich aus unserer Studie bei "entsprechender" Interpretation genug Material ergeben, um in der Öffentlichkeit für die jeweils präferierte Variante zu werben. Daraus kann der Schluß gezogen werden, daß der Ökonom/inn/en liebes Kind, die Kosten-Nutzen-Analyse, auch in wichtigen Themenbereichen kaum eine politische Relevanz erhält. Die Vermittlung des Konzeptes der Kosten-Nutzen-Analyse selbst gelang ebenfalls nur zum Teil.

Rückblickend hätte die Kosten-Nutzen-Analyse genug Stoff zu Diskussion geboten. Welche Punkte waren aber schlußendlich aus meiner subjektiven Sicht entscheidend bei der Verwirklichung des Nationalparks (sprich: die Unterzeichnung eines entsprechenden Staatsvertrages)?

- 1. Einbeziehung öffentlicher und privater Grundeigentümer und deren Entschädigungszahlungen.
- Belastung öffentlicher Haushalte und Aufteilung der Ausgaben für die Nationalparkeinrichtung auf die beteiligten Gebietskörperschaften.
- Obwohl nachgewiesenermaßen die Land-, Jagd-, Fischerei- und Forstwirtschaft aus volkswirtschaftlicher Sicht unbedeutend sind, trugen diese Bereiche wesentlich zu Schaffung von Akzeptanz bei bzw. waren Hindernisse auf dem Weg zur Zustimmung der Anwohner/innen.

Für nicht unwesentlich bei der Entscheidungsfindung halte ich darüber hinaus Querschüsse aus unterschiedlichen Ecken, die entweder (partei)politisch motiviert waren oder aufgrund alter Feindschaften entstanden. Für sehr interessant und untersuchenswert halte ich diesbezüglich eine Untersuchung der "Soziologie der Nationalparkentstehung": Es wäre eine lohnende Aufgabe, die Biographie der einzelnen Beiteiligten zu verfolgen (z. B. beruflicher Wechsel von der Nationalparkplanung zur Errichtungsgesellschaft von Donaukraftwerken), die Freund- und Feindschaften unter die Lupe zu nehmen (z. B. welche Entscheidungsträger gerne miteinander Bier trinken gehen), die Wandelbarkeit mancher Gutachter/innen im Zeitverlauf zu beobachten und die kleinkrämerischen parteipolitischen Taktiken aufzudecken (z. B. Partei X ist im Bundesland A für den Nationalpark, weil sie dort in der Regierung sitzt, und ist im Bundesland B dagegen, weil in Opposition). Auch das Ignorieren wissenschaftlicher Planungsergebnisse im Gesetzwerdungsprozeß, welche z. B. durch den Rücktritt des Vorsitzenden des Wissenschaftlichen Beirats der Nationalparkplanung aus Protest gegen die Vorgangsweise bei der Gesetzwerdung dokumentiert ist, könnte Inhalt einer solchen Studie sein.

Grundsätzlich ist meiner Einschätzung nach davor zu warnen, daß Kosten-Nutzen-Analysen in der politischen Praxis eine gewichtige Rolle spielen. Allerdings kann die Anwendung unterstützend für umweltpolitische Ziele dienen. Zahlungsbereitschaftsanalysen (Kontingenzbefragungen) können durchaus als umweltpolitisches Instrument gesehen werden: Neben der Messung der Effizienz eines Projektes im Rahmen der Kosten-Nutzen-Analyse und der Aufgabe der Informationsbeschaffung und -bewertung für Entscheidungsträger können die bislang durchgeführten monetären Bewertungen von Naturgütern (insb. Biodiversität) als Begründung von Naturschutz herangezogen werden. Dieser Aspekt wird insbesondere von U. Hampicke (1992) und von H. Blöchliger et al. (1995, S. 149) betont: "Ein Vergleich der Zahlungsbereitschaft (Wertschätzung) für schöne Landschaften mit den Kosten der Landschaftsentwicklung erweckt den Eindruck, daß selbst vorsichtige Annahmen über die Zahlungsbereitschaft auf Summen führen, welche den Finanzbedarf zur Abdeckung von Kosten für eine ästhetische und ökologisch vorteilhafte Landschaftspflege und -bewahrung erheblich überschreiten. Seitens der Bevölkerung ist also eine Bereitstellung zusätzlicher Mittel erwünscht" (Hervorhebung im Original).

Zusammenfassend läßt sich festhalten, daß die Kosten-Nutzen-Analyse (KNA) ausgewählter Varianten eines Nationalparks Donau-Auen folgende Zielsetzungen erfüllte:

- (1) Informationsinstrument: Die KNA diente zur Informationsbeschaffung für die Entscheidunsträger/innen und Betroffenen, da erstmals aus wirtschaftswissenschaftlicher Sicht die einzelnen Problemdimensionen in ihrer volkswirtschaftlichen Bedeutung beurteilt werden konnten.
- (2) Die Kosten-Nutzen-Analyse machte weiters jene kritischen Projektbestandteile transparent, die je nach Ausprägung zu gänzlich unterschiedlichen Ergebnissen führte.
- (3) Die Messung der volkswirtschaftlichen Effizienz eines Projektes mittels der KNA mag ein abstrakter Wunsch der Ökonomie als Wissenschaft sein, jedoch sagt der volkswirtschaftliche Vermögenszuwachs aufgrund der Durchführung eines Projektes noch sehr wenig über die Erwünschtheit eines Projektes bei einer Vielzahl weitergehender Anforderungen (Verteilungsprobleme, Akzeptanz der Anrainergemeinden usf.) aus.
- (4) Eine "ökologisch sensible" und auf erfragte Zahlungsbereitschaften zurückgreifende KNA kann sich im Zusammenhang mit der Bewertung öffentlicher Projekte als umweltpolitisches Instrument erweisen, da die Präferenzen der Bevölkerung für den Erhalt oder die Verbesserung von Naturgütern auch geldmäßiges Gewicht erhält.
- (5) Das Instrument der Zahlungsbereitschaftsbefragung selbst ist jedoch kaum allgemein vermittelbar, und die Frage, was geäußerte Zahlungsbereitschaften wirklich aussagen, größtenteils noch immer ungelöst.

Literatur

 Blöchliger H., Hampicke U., Langer G. (1995). Schöne Landschaften: Was sind sie uns wert, was kostet ihre Erhaltung? In: Altner G., Mettler-Meibom B., Simonis U. E., v. Weizsäcker E. U., Jahrbuch Ökologie 1996. Verlag C. H. Beck: München.

- Donaukraft (1989), Machbarkeitsstudie Donaukraftwerk Wildungsmauer/Donaukraftwerk Wolfsthal-Bratislava II. Wien.
- Hampicke U. (1992). Ökologische Ökonomie. Westdeutscher Verlag: Opladen.
- Kosz M. (1996), Valuing Riverside Wetlands: the Case of the "Donau-Auen" National Park, in: Ecological Economics 16 (2), p. 109-127.
- Nationalparkplanung Donau-Auen (1994), Konzept für den Nationalpark Donau-Auen. bericht über die Planungsarbeiten 1991-1993. Bundesministerium für Umwelt: Wien.
- Schönbäck W., Kosz M., Madreiter T. (1997), Nationalpark Donauauen: Kosten-Nutzen-Analyse.
 Springer Verlag: Wien, New York.

Markus F. Hofreither

Bodennutzungszertifikate als Instrumente im Grundwasserschutz?

Wasser ist eines der wesentlichsten Elemente für die Sicherung der menschlichen Existenz. Die Nachfrage nach dieser Ressource steigt kontinuierlich, was angesichts der seit Urzeiten unveränderten natürlichen Vorkommen Knappheitsphänomene auslöst. Global gesehen trägt die Landwirtschaft maßgeblich zur quantitativen und qualitativen Verknappung von Wasser bei. Aus der Sicht des Gewässerschutzes stehen vor allem die Belastungen in Form von Nitrat und Pestizidrückständen im Mittelpunkt des Interesses. Ein wesentliches Manko bei der Konzeption wirksamer Gegenmaßnahmen ist das oft unzureichende Wissen hinsichtlich des konkreten Zusammenhangs zwischen umwelt- bzw. agrarpolitischen Maßnahmen, der Reaktion des Landwirts darauf und den Folgen für die Umwelt in der erforderlichen regional differenzierten Form.

Traditionell herrschen in der Umweltpolitik direkte Regulierungen in Form von Ge- und Verboten vor. Der Gewässerschutz stellt dabei keine Ausnahme dar. Diese Art der Regelung von Nutzungskonflikten hat jahrhundertealte Wurzeln. Die Wirksamkeit gesetzlicher Regelungen resultiert jedoch in jeder Epoche - bei gegebener Kontrollintensität und Strafhöhe - von der grundsätzlichen Übereinstimmung dieser Regeln mit akzeptierten kollektiven Moralbzw. Wertvorstellungen. Diese können sich jedoch im Zeitablauf ändern und tun dies in der Regel auch. Zur Zeit befinden wir uns in einer derartigen Situation, in der die von der Landwirtschaft ausgehenden negativen externen Effekten in Form von Nitratbelastungen des Grundwassers immer stärker in Konflikt zu den geänderten gesellschaftlichen Wertvorstellungen im Sinne einer intensivierten Umweltsensibilität stehen. m²

¹³ Eine wichtige Regelung von gewässerrelevanten Aspekten findet sich im Wasserrechtsgesetz (WRG) (BGBI 215/1959 idF 252/1990), dessen Hauptziel die Erhaltung des Grundwassers als Trinkwasserressource für die Bevölkerung ist. Einwirkungen auf die Beschaffenheit der Gewässer sind grundsätzlich bewilligungspflichtig (§ 32 WRG), davon ausgenommen sind lediglich geringfügige Einwirkungen, der Gemeingebrauch und die ordnungsgemäße land- und forstwirtschaftliche Bodennutzung. Die im Wasserrecht vorgesehenen Schwellenwerte für das Grundwasser leiten sich von den Grenzwerten für das Trinkwasser ab und sehen gemäß Grundwasserschwellenwertverordnung (BGBL 502/1991) für Nitrat einen Schwellenwert von derzeit 45 mg NO3/I vor, der sich ab 1. Juli 1997 auf 60 % des geltenden Trinkwassergrenzwertes reduziert. Die Nitratverordnung (§ 2) gemäß Lebensmittelgesetz (BGBL. Nr. 557/1989) verbietet, Trinkwasser in den Verkehr zu bringen, das höhere Nitratwerte als 50 mg NO3/I aufweist. Dieser Grenzwert reduziert sich ab dem 1. 7. 1999 auf 30 mg NO3/l. Seit dem Beitritt Österreichs zur EU haben auch gemeinschaftsrechtliche Regelungen zu beachten. Mit der "Richtlinie über die Qualität von Wasser für den menschlichen Gebrauch (RL 80/778 EWG)" legte die Europäische Union 1980 den Nitratgrenzwert mit 50 mg/l und einen (anzustrebenden) Richtwert von 25 mg/NO3 je Liter fest (BMLF, 1993). Die "Richtlinie zum Schutz der Gewässer vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen (RL 91/676/EWG)" hat das Ziel, Oberflächen-, Grund- und Meeresgewässer für den menschlichen Konsum bzw. vor Eutrophierung zu schützen. Kernpunkte sind eine strikte Begrenzung der Düngung in Gebieten, in denen das Wasser bereits eine hohe Nitratbelastung aufweist, und flächendeckende Regeln für die "gute landwirtschaftliche Praxis".

Eine derartige Entwicklung hat zur Folge, daß auch bei unveränderten gesetzlichen Bestimmungen Defizite in der Zielerreichung auftreten. Diese Zielabweichungen können im bestehenden "command-and-control"-System dadurch reduziert werden, daß die Kontrollintensität oder aber das Strafausmaß drastisch erhöht werden. Die mit administrativen Lösungen oft verbundenen hohen Kontrollkosten haben mittlerweile dazu geführt, daß das Interesse an alternativen Instrumenten zur Erreichung umweltpolitischer Zielvorgaben zugenommen hat.

Für eine zielführende und effiziente Analyse gesellschaftlicher Problemstellungen im Umweltbereich wird damit eine ausgewogenere Berücksichtigung rechtlicher, ökonomischer und naturwissenschaftlicher Determinanten potentiell wichtiger. In diesem Beitrag wird - ausgehend von der aus ökonomisch-theoretischer Sicht optimalen Emissionsbesteuerung - versucht, ein System von Bodennutzungsrechten als Ergänzung zu den bestehenden Wasserrechtsbestimmungen zu skizzieren.

Betriebsoptimum und Nitratbelastung

Die Zielfunktion eines landwirtschaftlichen Betriebes ist auf Gewinnmaximierung ausgerichtet, wobei die relativen Preise von In- und Outputs sowie die gesetzlichen, technischen und naturräumlichen Bedingungen als Restriktionen wirken. Auch der Input Stickstoff unterliegt diesen Vorgaben.

Grundsätzlich wird unterstellt, daß eine exakt auf den durch die Pflanze ausgeübten Entzug ausgerichtete Düngung zum selben Gehalt an mineralisiertem Reststickstoff im Boden führen würde wie eine Nulldüngung (WERNER, 1996). Jede Düngung über diesen Wert hinaus führt zur Vergrößerung des Stickstoffpools im Boden. Die wesentlichsten Ursachen für eine "Überdüngung" liegen im (unvermeidlichen) Informationsdefizit bezüglich der klimatischen und meteorologischen Bedingungen innerhalb des Produktionszeitraumes, welches zur Erreichung des betriebswirtschaftlichen Optimums unter Risikoaversion eine an der Varianz dieser Abweichungen ausgerichtete erhöhte Düngemenge rechtfertigen kann. In dieselbe Kategorie fällt auch das noch unzureichende Wissen über die Stofftransportvorgänge. Dazu kommen (vermeidbare) Bewirtschaftungsfehler des Landwirts, deren Ursachen von individuellen Wissensmängeln bis zu absichtlichen Fehlhandlungen reichen.

Die Konzentration der Forschungskapazitäten im Nitratbereich auf naturwissenschaftliche Problemstellungen hat das Wissen und das Verständnis für die komplexen Prozesse, die zur Nitratbelastung des Grundwassers führen, spürbar verbessert. Dennoch können diese Erkenntnisse (noch) nicht für eine generalisierende, flächendeckende Abschätzung alternativer Nitratbelastungen auf modellgestützter Ebene herangezogen werden, weil die enormen Ansprüche an die Datenverfügbarkeit praktisch nie erfüllbar sind. Aber auch unter der Annahme, daß dieses Informationsdefizit beseitigt werden könnte, müßte zudem jeder Landwirt dann freiwillig zur Kooperation bereit sein, wenn der für die Einhaltung der Nitratgrenzwerte

¹⁴ Die zuvor postulierte Hypothese einer verstärkten Gewinnorientierung der Landwirte würde zusätzlich für die Wirksamkeit ökonomischer Anreize sprechen.

zulässige Düngungsüberschuß unter dem zur Erreichung seines Gewinnmaximums erforderlichen Wert liegt. In dieser Situation stehen Umweltziele in einem Konfliktverhältnis zum Einkommensziel des Landwirts, was einen Anreiz darstellt, die Befolgung von Umweltauflagen zu vermeiden. Das gilt besonders dann, wenn entstehende Einkommensverluste nicht oder nicht vollständig kompensiert werden.

Aber auch Kompensationszahlungen bieten keine Gewähr für die vollständige Einhaltung der Vorgaben. Wieder ist es der Erwartungswert des Einkommens im Falle der Befolgung bzw. Umgehung der Umweltauflagen, welcher das Verhalten des Landwirts letztendlich steuert. Die Einkommenshöhe im ersten Fall ergibt sich aus der Summe von vermindertem Produktionseinkommen plus Kompensationszahlung. Im zweiten Fall ist es das ursprüngliche, höhere Einkommen aus der Produktion plus Kompensationszahlung, vermindert um den Erwartungswert der Strafe, gegeben durch die Aufdeckungswahrscheinlichkeit in Verbindung mit der Strafhöhe. Bei welcher Höhe dieses Erwartungswertes der Landwirt zur Kooperation bereit ist, wird durch seine Risikoaversion sowie seine Umwelteinstellung (mit)bestimmt. Nachdem die Monitoring- und Durchsetzungskosten bei flächenhaften Umwelteinwirkungen mit multikausaler Struktur in der Regel sehr hoch sind, liegt die Aufdekkungswahrscheinlichkeit eher niedrig. Die unter diesen Bedingungen erforderlichen hohen Strafausmaße wiederum sind politisch kaum konsensfähig, weil sie u. U. die Existenz des Betriebes gefährden würden.

Die Hauptprobleme einer effizienten Nitratpolitik sind damit der hohe Informationsbedarf für Behörden und Landwirte, die hohen Kontrollkosten und die praktischen Durchsetzungsprobleme. Es ist daher sehr schwierig, vielleicht sogar unmöglich, eine allgemeingültige Strategie zu konzipieren, die das Nitratproblem wirksam löst. Immer hängt es von den konkreten Umständen ab, welche Vorgangsweise wirksam und kosteneffizient ist. Grundsätzlich dürfte gelten, daß mit steigender Gewinnorientierung der Landwirte Veränderungen der ökonomischen Rahmenbedingungen relativ wirksamer sein werden, um "freiwillige" Verhaltensänderungen der Landwirte zu initiieren.

Ob in einem bestimmten Fall einem rechtlich-administrativen oder einem ökonomischen, anreizorientierten Instrument der Vorzug zu geben ist, sollte keine dogmatische Grundsatzentscheidung sein, sondern im konkreten Einzelfall sorgfältig überlegt werden. Dabei sind Faktoren wie die ökologische Effektivität, die ökonomische Effizienz, der erforderliche Informationsbedarf sowie die anfallenden Administrations- und Kontrollkosten, daneben aber auch die Dringlichkeit der Problemlösung und die Akzeptanz der Betroffenen ins Kalkül zu ziehen (SIEBERT, 1992, 129).

Anreizorientierte Instrumente und Nitratbelastung

Anreizorientierte oder "ökonomische" Umweltinstrumente können als Instrumente definiert werden, welche Kosten und Nutzen von Entscheidungsträgern so beeinflussen, daß diese ihr Verhalten freiwillig - in Verfolgung ihrer Eigeninteressen - der Erreichung der gewünschten ökologischen Zielsetzung unterordnen. Vereinfacht formuliert resultiert dies daraus, daß sich die gewinnoptimale Produktionsstruktur des landwirtschaftlichen Betriebs in die ökolo-

gisch erwünschte Richtung verschiebt. Dies kann durch eine Änderung der relativen Preise, über einen finanziellen Transfer zwischen Verursachern und Betroffenen oder durch Schaffung eines neuen Marktes für Nutzungsrechte bewirkt werden.

Die Möglichkeit flexibler Reduktionsstrategien und der damit verbundenen Kosteneinsparungen werden von Ökonomen am häufigsten als Vorteil der ökonomischen Instrumente genannt. Das bedeutet z.B. konkret, daß Emittenten mit geringeren Vermeidungskosten stärker reduzieren werden als solche mit hohen Vermeidungskosten. Darüber hinaus können derartige Ansätze auch den technischen Fortschritt im Bereich der Vermeidung stimulieren, den Flexibilitätsspielraum sowohl von Behörden als auch betroffenen Verschmutzern erhöhen und nicht zuletzt eine Finanzquelle für die öffentliche Hand darstellen, die im Optimalfall für gezielte Umweltprogramme genutzt wird (HOFREITHER/SINABELL, 1994).

In bezug auf das Nitratproblem sind Ansätze zu entwickeln, welche einerseits eine weitgehende Annäherung an die theoretische Optimalsituation ermöglichen, gleichzeitig jedoch ausreichende Akzeptanz und damit Chancen auf praktische Umsetzung aufweisen. Sowohl für den Landwirt als auch die regulierende Instanz setzt die Konzeption wirksamer und gleichzeitig effizienter Maßnahmen zur Lösung des anstehenden Problems jedoch voraus, daß ausreichende Informationen über

- das Ausmaß der Nitratbelastung in zeitlich und regional differenzierter Form,
- die dieses Problem verursachenden Stoffströme,
- die diese Stoffströme auslösenden technischen, ökonomischen und rechtlichen Parameter sowie
- die dahinterstehenden Interessen und Motivationen der Akteure zur Verfügung stehen.

Die häufig vorgeschlagenen Maßnahmen wie Anwendung einer "guten fachlichen Praxis" sowie einer verbesserten Aus- und Weiterbildung oder Beratung sind notwendig und sinnvoll, jedoch nicht ausreichend. Sie müssen ergänzt werden durch Maßnahmen, die unmittelbarer auf das ökonomische Optimum des Betriebes gerichtet sind. Grundsätzlich können diese Maßnahmen entweder auf der Preis- bzw. Kostenebene ansetzen, oder direkt in die Stoffströme des Betriebes eingreifen. Die folgenden drei Ansätze repräsentieren die relevanten theoretischen Grundmodule, welche - in entsprechenden Kombinationen sowie ergänzt durch praktische Zugeständnisse - die Bausteine für eine praktikable Lösung darstellen. Diese sind im einzelnen

- (1) eine Emissionssteuer auf den Nitrataustrag,
- (2) eine Abgabe auf den Inputfaktor Stickstoff,
- (3) Mengenbegrenzungen für den N-Eintrag ins Grundwasser über Vorgaben bezüglich der Nitratemissionen, der N-Inputs bzw. der Outputmengen.

Eine Besteuerung des Nitrataustrags in Grund- und Oberflächengewässer setzt beim eigentlichen Problem an und führt damit unter bestimmten Voraussetzungen zu einem gesellschaftlichen Optimum. Die Optimallösung für dieses Problem würde so aussehen, daß die Steuerhöhe den verursachten Grenzkosten entspricht. Eine einheitliche Steuerhöhe für alle Emittenten führt jedoch nur dann zu einem sozialen Optimum, wenn auch die Grenzschäden unabhängig von der Verschmutzungsquelle identisch sind. Variieren die Grenzschäden, was

in der Praxis vorwiegend der Fall sein dürfte, dann müßte die Steuerhöhe im Extremfall für jeden Landwirt je nach Schadensart und -höhe angepaßt werden, um ein soziales Optimum zu erreichen (HELFAND, HOUSE, 1996). Ganz offensichtlich ist diese Optimalsituation nur im Rahmen theoretischer Modelle gegeben, kann für die praktische Umsetzung jedoch lediglich eine Richtschnur sein, weil die Įnformationsanforderungen für diffuse Emissionsquellen unerfüllbar sind. Mit jeder Abweichung von der Optimallösung sinkt die Effizienz dieser Maßnahme, womit sich die sozialen Kosten erhöhen.

Die Wirkung einer Abgabe auf Stickstoffdünger basiert auf der vereinfachenden Annahme, daß weniger Düngung eine verringerte Auswaschung und damit weniger Nitrat im Grundwasser bewirkt. Gegenüber der Emissionsbesteuerung kommen zwei zusätzliche Unsicherheitsfaktoren hinzu: (i) der Homogenitätsgrad der Verschmutzungsfunktion, also der Zusammenhang zwischen einer relativen Veränderung der Düngungsmenge zur relativen Veränderung der Auswaschungsmenge sowie (ii) die mögliche Veränderung der Produktionsstruktur mit der Folge einer Veränderung des Anteils an Risikokulturen. Die für eine optimale Lösung erforderliche Differenzierung der Steuerhöhe nach Produktionsbereichen und naturräumlichen Kriterien wird damit noch komplizierter. Zusätzlich tritt bei unterschiedlichen Steuerhöhen das "resale problem² auf, es bildet sich ein "grauer" Markt, auf dem die Landwirte eine inoffizielle Umverteilung der Düngermengen versuchen werden. Die umfangreiche Diskussion um dieses Instrument hat auch gezeigt, daß aufgrund der niedrigen Preiselastizität der Landwirte ein drastischer Preisanstieg für N-Dünger erforderlich wäre, um sichtbare Minderungen der Ausbringungsmengen zu initiieren.

Eine weitere Variante besteht in gesetzlichen Beschränkungen der zulässigen Gesamtdüngungsmenge je Flächeneinheit bzw. in Vorschriften zur Reduktion der in der Vergangenheit applizierten Mengen um einen bestimmten Prozentsatz. Neben den Effizienzproblemen als Folge uniformer Vorgaben im Falle heterogener Anwendungsbedingungen kommt in diesem Bereich besonders dem Monitoringproblem zentrale Bedeutung zu.

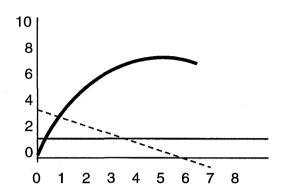
weniger diskutierte Alternative in diesem Zusammenhang Emissionszertifikate, die jeweils für ein bestimmtes Grundwassereinzugsgebiet im Ausmaß der maximal zulässigen totalen Nitratfracht in Umlauf gebracht werden. Sind diese Zertifikate innerhalb des Gebietes handelbar, ist mit diesem Ansatz eine kosteneffiziente Lösung zu erreichen. Alternativ könnten derartige Zertifikatssysteme auch für die N-Inputs konzipiert werden, wodurch sich das Monitoringproblem deutlich verringern würde, allerdings wieder das oben erwähnte "resale problem² auftreten kann. Eine dritte Variante besteht darin, die Produktionsmengen innerhalb einer Region zu limitieren. Für jede Art der Landbewirtschaftung wären dann Zertifikate im Ausmaß der mit dieser Nutzungsform einhergehenden Nitratbelastung erforderlich. In diesem Fall beruht der Wirkungszusammenhang auf einer sehr indirekten Kausalkette zwischen Produkt, erforderlicher Düngerapplikation, der Wahrscheinlichkeit der Auswaschung und den dadurch ausgelösten Effekten auf den Grundwasserkörper. Dieser Ansatz soll im weiteren näher beleuchtet werden.

System von Bodennutzungszertifikaten (BNZ)

Die Grundidee zu diesem Konzept basiert auf einem System von übertragbaren Verschmutzungsrechten, welches aus Praktikabilitäts- und Akzeptanzüberlegungen heraus indirekt über die Outputmengen realisiert wird. Der Zusammenhang zwischen Produktionstätigkeit und Nitratbelastung ist damit sehr indirekt, er ergibt sich aus dem Erwartungswert der mit einer bestimmten Bodennutzungsform einhergehenden Grundwasserbelastung. Die Literatur zu diesen Ansätzen betont relativ einhellig, daß deren Erfolg zu einem wesentlichen Teil von den spezifischen Details der Implementierung abhängt¹⁵.

Die Einrichtung derartiger Bodennutzungsrechte macht in erster Linie dort Sinn, wo innerhalb von geschlossenen Wassereinzugsgebieten mit einer Überschreitung der zulässigen Grenzwerte zu rechnen ist bzw. eine derartige Überschreitung bereits eingetreten ist. Die vorbereitenden Schritte für die Einführung eines derartigen Systems sehen dabei wie folgt aus:

- Zuerst ist die Gesamtnitratfracht innerhalb dieses Einzugsgebietes zu berechnen, welche mit den jeweiligen Grenzwerten vereinbar ist. Dabei müssen auch die zusätzlichen Nitratquellen außerhalb des Einflußbereiches der Landwirtschaft berücksichtigt werden.
- Auf Basis der spezifischen Gegebenheiten des Gebietes sind die durchschnittlichen N-Emissionen jeder Bodennutzung - bei gegebener Technologie - zu eruieren.
- Daran anschließend müßten die mit einem Zertifikat verbundenen Emissionsrechte in Mengeneinheiten und daraus die für jede Art der Bodennutzung erforderliche Zahl von Zertifikaten innerhalb dieses Einzugsgebietes festlegt werden.

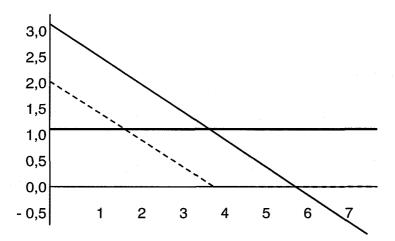

Funktionsweise des BNZ-Systems

Ein einfaches Beispiel soll die Funktionsweise eines derartigen Systems illustrieren: Will ein Landwirt seine Maisproduktion auf Kosten seines Grünlandanteils ausdehnen, dann benötigt er dafür zusätzliche Zertifikate, weil die flächenspezifischen Emissionen von Mais höher liegen. Nachdem die Gesamtsumme der Zertifikate fixiert ist, muß er einen Verkäufer finden, der eine gegenläufige Umstellung seiner Flächennutzung plant.

Wenn wir eine Produktionsfunktion q(N) unterstellen, die ausschließlich auf dem variablen Input N beruht und zumindest zweifach differenzierbar sein soll (mit q'(N) > 0 und q''(N) < 0 im ökonomisch sinnvollen Bereich), dann erhalten wir die in der folgenden Abbildung 1 dargestellten Gegebenheiten

¹⁵ Umfangreiche praktische Erfahrung mit derartigen Systemen wurden speziell im Zusammenhang mit dem Clean Air Act in den U.S.A. sowie vom Regional Clean Air Incentives Market in Los Angeles gewonnen.

Abbildung 1: Produktionsgegebenheiten des Landwirts A


(Produktionsfunktion = $q_A = g$; Grenzprodukt = $dq_A = g$).

Der Landwirt setzt nur einen variablen Input - Stickstoff N - ein, dessen gewinnoptimale Menge sich aus Wertgrenzprodukt (WGP) gleich Inputpreis (WGP = p_N) ableiten läßt. Die maximale Zahlungsbereitschaft des Landwirts für Nitratzertifikate entspricht der positiven Differenz zwischen dem Wertgrenzprodukt und dem Inputpreis.

Diese Zusammenhänge sind in der folgenden Graphik (Abbildung 2) dargestellt, welche - wie auch alle übrigen Darstellungen in diesem Beitrag - auf einer Simulation aus Hofreither (1996) beruht. Der Landwirt A zeigt bis zu einem Stickstoffeinsatz von 4 Einheiten eine positive, jedoch abnehmende Zahlungsbereitschaft für die Zertifikate. Ab diesem Punkt macht ein Mehreinsatz von Stickstoff auch im Falle "geschenkter" Zertifikate keinen Sinn, weil das WGP unter den Inputpreis fällt.

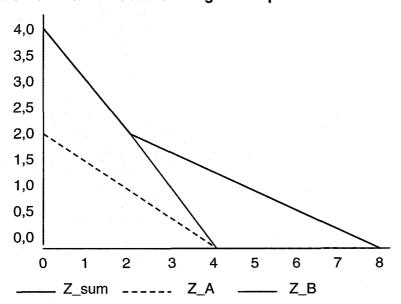

Die Situation des Zertifikatsmarktes soll anhand des einfachsten Falles mit zwei Landwirten illustriert werden (Abbildung 3). Die Gesamtnachfrage nach Zertifikaten (Z_sum) ergibt sich durch horizontale Aggregierung der individuellen Z-Nachfragekurven (Z_A und Z_B). Wenn wir nun unterstellen, daß die Erstvergabe durch kostenlose Zuteilung von Zertifikaten im bisherigen Ausmaß des Stickstoffeinsatzes erfolgt ("grandfathering"), dann werden beide Landwirte jeweils vier Z erhalten.

Abbildung 2: Wertgrenzprodukt (dq_A) ____, N-Preis (p_N) ___ unc Zahlungsbereitschaft für -N-Zertifikate (p_Z_A)

Wenn nun einer der beiden Landwirte seine Produktion intensivieren will, dann benötigt er dafür zusätzliche Zertifikate, was c.p. zu steigenden Preisen für die Zertifikate führt. Das hat zur Folge, daß der andere Landwirt in eine Situation gerät, bei der für einen Teil seiner Zertifikate der Verkauf ökonomisch lukrativer ist als die Fortführung der Produktionstätigkeit. Eine Extensivierung bringt damit unter den gegebenen Umständen einen ökonomischen Vorteil. Die Z-Preise steigt nun soweit, bis die Summe der Veränderungen der gewünschten Z-mengen der beiden Landwirte null beträgt, der Markt also wieder im Gleichgewicht ist. In jedem beliebigen Fall muß dabei die Gesamtemissionsmenge in dem erfaßten Gebiet unverändert bleiben. Dies stellt den entscheidenden theoretischen Vorteil dieses Systems von Nutzungsrechten gegenüber einem Input- oder Emissionssteuersystem dar.

Abbildung 3: Zertifikatsmarkt und Gleichgewichtspreis

Soll dagegen die Nitratfracht in diesem Gebiet reduziert werden, dann kann dies über zwei Strategien verfolgt werden: entweder die Behörde verfügt eine "Abwertung" der im Umlauf befindlichen Zertifikate um einen der gewünschten Reduktion entsprechenden Prozentsatz

oder sie kauft eine entsprechende Menge von Zertifikaten aus dem Markt heraus. Wenn z. B. die Z-Menge um eine Einheit reduziert werden soll, dann muß die Behörde den Zertifikatseignern eine entsprechendes Angebot unterbreiten. Wieder ergibt sich eine analoge Situation zum vorher geschilderten Fall, allerdings betrifft sie nun beide Landwirte. Sie werden freiwillig Zertifikate verkaufen wollen, weil dies ihr Einkommen erhöht. Diese Politik stellt eine sehr marktnahe Lösung dar, weil sie die gewünschte Verhaltensänderung der Landwirte allein über ökonomische Anreize bewirkt.

Gestaltung des Systemdesigns

Erstvergabe

Ein kritischer Aspekt des Programmdesigns ist die Art und Weise, wie die Erstvergabe dieser Rechte erfolgt. Grundsätzlich besteht für diese Erstverteilung der Rechte eine Reihe von Möglichkeiten (HODGE, 1996): Eine Art der Erstverteilung, welche der optimalen Verteilung dieser Bodennutzungsrechte sehr nahe kommt, wäre eine Auktion, in der Erstgebote in verschlossenen Kuverts abgegeben werden. Dem Gegenargument, daß es nicht fair sei, auch von den landwirtschaftlichen Unternehmungen, die ihre Grenzwerte nicht überschreiten, ein Zahlung zu verlangen, könnte durch eine Rückverteilung der Einnahmen der Auktion begegnet werden. In der Praxis vermutlich eher akzeptiert werden würde eine Verteilung dieser Rechte durch *grandfathering*¹⁶, woran sich eine beliebige Umverteilung zwischen den Titelhaltern durch die Handelbarkeit dieser Rechte anschließen könnte. Bei der Wahl des Beobachtungszeitraumes ist darauf zu achten, daß Versuche, durch strategisches Verhalten vor der Einführung ein möglichst hohes Volumen an Nutzungsrechten zu erhalten, verhindert werden.

Die politische Akzeptanz einer Zertifikatslösung wird in der Regel sehr stark davon bestimmt, inwieweit die Erstallokation dieser Rechte mit den bestehenden Eigentumsrechten aus der Sicht der Verschmutzer übereinstimmt. Theoretische Analysen legen auch nahe, daß im Falle von Transaktionskosten diese Erstverteilung sehr wohl das Endergebnis bestimmen könnte (STAVINS 1995).

Handelbarkeit

Für den Handel dieser Nutzungsrechte müssen ebenfalls klare Regeln etabliert werden. Im Unterschied zu Warenmärkten erfordert ein Markt für Rechte immer einen höheren Umfang an Regulierung. Konkret wird dies in Form eines zentralen Registers für diese Nutzungsrechte bewerkstelligt werden, so daß die Handelsvorgänge in bezug auf diese Rechte mit den entsprechenden Veränderungen der Bodennutzung überprüft werden können. Die Ab-

¹⁶ Darunter versteht man eine in der Regel kostenlose Zuteilung, welche auf den bisherigen Gegebenheiten beruht.

wicklung des Handels sollte durch eine zentrale Stelle - z. B. eine Landwirtschaftskammer oder eine Bank - koordiniert werden.

Im Falle von sehr unterschiedlichen Verteilungen von Nitratwerten innerhalb des Aquifers kann es notwendig sein, unterschiedliche Standards innerhalb des Einzugsgebietes zu etablieren. Das bedingt zumindest eine Einschränkung des Handels, innerhalb bestimmter Zonen (z. B. um Wasserversorgungsanlagen) könnte die Nutzung dieser Rechte sogar völlig untersagt werden. Allerdings könnten die Besitzer ihre Rechte in diesem Fall verkaufen, woraus sich automatisch eine Kompensation für die eingeschränkten Nutzungsrechte ergeben würde. Droht daraus eine unzulässige Erhöhung der Nitratfracht im verbleibenden Gebiet, dann müßte die regulierende Instanz selbst diese Zertifikate zurückkaufen.

Vor- und Nachteile von BNZ in der Praxis

Ein großer Vorteil eines Systems von Nutzungsrechten gegenüber anderen anreizkompatiblen Instrumenten besteht darin, daß die Verschmutzungsgrenzen im Falle niedrigerer gesetzlicher Vorgaben relativ einfach adaptiert werden können. Auch veränderte relative Preise in bezug auf Inputs oder Outputs, welche die Ausgangsverteilung der Bodennutzung verändern, führen zu entsprechenden Reaktionen auf dem Markt für die Bodennutzungsrechte. Das Problem der sinkenden Effizienz dieses Systems im Falle heterogener Produktionsbedingungen ließe sich durch eine Ausweitung der Zahl zulässiger Bodennutzungsformen - in Abhängigkeit von den natürlichen und technischen Produktionsgegebenheiten - reduzieren.

Das in diesem Beitrag vorgeschlagene System von Bodennutzungsrechten weist auch im Hinblick auf das in der Realität dominierende Problem der Überwachung und Durchsetzung einige attraktive Eigenschaften auf. Während bei den "effizienten" Politikansätzen die Kontrolle der Verschmutzungsvolumina sehr schwierig ist, gestaltet sich die Überwachung der Bodennutzungsformen sehr einfach. Dies wird heute bereits im Rahmen der Flächenstillegungsprogramme sowie der Kompensationszahlungen im Rahmen der Getreidemarktordnung standardmäßig durchgeführt. Die Überwachung der getroffenen Vereinbarungen ließe sich damit relativ einfach in das bereits jetzt etablierte System zur Abwicklung der GAP-Prämien integrieren, wodurch lediglich die Grenzkosten anfallen würden. Die Einbindung in die bestehende Agrarpolitik scheint damit keine unüberwindlichen Hürden aufzuwerfen. Die Möglichkeit von Einnahmen durch den Verkauf von BNZ könnte sogar den Anreiz zu ökologisch vorteilhaften langfristigen Stillegungen erhöhen.

Auch in Regionen mit Viehbesatz könnte ein derartiges BNZ-System zur Anwendung gelangen, wobei lediglich die administrative Abwicklung etwas komplizierter werden kann. Unter den Gegebenheiten der GAP (Gemeinsame Agrarpolitik) muß weiterhin sichergestellt bleiben, daß Betriebe mit Nährstoffüberschüssen entweder gezwungen werden, den Viehbesatz zu reduzieren oder eine ordnungsgemäße Entsorgung nachweisen. Weil das System auf Bodennutzung und nicht auf Auswaschung oder Düngerapplikation bezogen ist, bietet es jedoch keinen automatischen Anreiz für die Landwirte, in Richtung einer guten landwirtschaftlichen Praxis aktiver als bisher zu werden. Das bedeutet, daß auch in Zukunft durch unsachgemäße Anwendung von Düngemitteln oder inadäquate Bewirtschaftungstechniken

Auswaschungsrisiken bestehen bleiben. Hier kann die landwirtschaftliche Beratung ergänzend wirksam werden.

Ein wesentliches Problem von BNZ mag darin bestehen, daß relativ wenige Transaktionen zustande kommen. Unsicherheit über die künftigen Gegebenheiten könnte z.B. dazu führen, daß diese Zertifikate gehortet werden. Einem unerwünschten (Nicht-)Gebrauch dieser Zertifikate kann durch gezielte Information über die längerfristige Wertentwicklung, aber auch durch die Einführung von Leasingmöglichkeiten begegnet werden. Welche konkreten Handelsregeln sich als optimal herausstellen, kann nur die praktische Erfahrung im Laufe der Zeit zeigen.

Zusammenfassung und Schlußfolgerungen

Dieser Beitrag versuchte abzuschätzen, welchen Beitrag stärker anreizorientierte Instrumente zur Verringerung der Nitratbelastung des Grundwassers leisten könnten. Ausgehend von der theoretisch optimalen Lösung einer direkten Emissionsbesteuerung wurde als konkrete Variante ein System von Bodennutzungsrechten betrachtet. Durch Abstriche von der theoretischen Optimallösung wurde dabei versucht, ein in der Praxis realisierbares Regelwerk zu konzipieren.

Natürlich stellen derartige Vorschläge in erster Linie eine Diskussionsgrundlage dar und sind in dieser stilisierten Form weit von dem für eine praktische Einführung erforderlichen Grad an Detailliertheit entfernt. Erst ein vertiefter Wissensstand über die naturwissenschaftlichen Ausprägungen ökonomischer Determinanten kann die dazu erforderlichen Detailergebnisse liefern. Die Abbildung von regionalen Stoffströmen und die Erhebung betrieblicher und schlagbezogener Stoffbilanzen bietet dafür eine wertvolle Grundlage.

Der grundlegende Vorteil von anreizorientierten Ansätzen besteht darin, daß diese stärker auf die Motivationsstruktur der Betroffenen Bezug nehmen, wodurch zumindest eine Senkung der Kontroll- und Durchsetzungskosten erwartet werden kann. Vermutlich erhöht sich aber auch der Zielerreichungsgrad. Ein weiterer Unterschied zu den in der Praxis vorherrschenden umweltpolitischen Instrumenten in der Agrarpolitik - die überwiegend "maßnahmenorientiert" sind - besteht darin, daß der hier gemachte Vorschlag durch seine Bezugnahme auf die N-Emissionen eine eindeutige Zielorientierung aufweist. Damit steigt der Handlungsspielraum des Landwirts, was wiederum die Kosteneffizienz dieser Maßnahmen erhöht. Von der konkreten Umsetzung her gesehen ließe sich ein derartiges System von BNZ zudem weitgehend problemlos in die bestehende EU-Agrarpolitik integrieren.

Für eine zielführende und effiziente Analyse gesellschaftlicher Problemstellungen im Umweltbereich scheint damit eine verstärkte Berücksichtigung der Zusammenhänge zwischen ökonomischen und naturwissenschaftlichen Determinanten innerhalb des agrarischen Produktionssystems unabdingbar. Die verbleibende Frage von zentraler Bedeutung besteht darin, inwieweit die politischen Entscheidungsträger tatsächlich gewillt sind, im Agrarbereich effiziente Lösungen anstelle von symbolischer Politik durchzusetzen.

Literatur

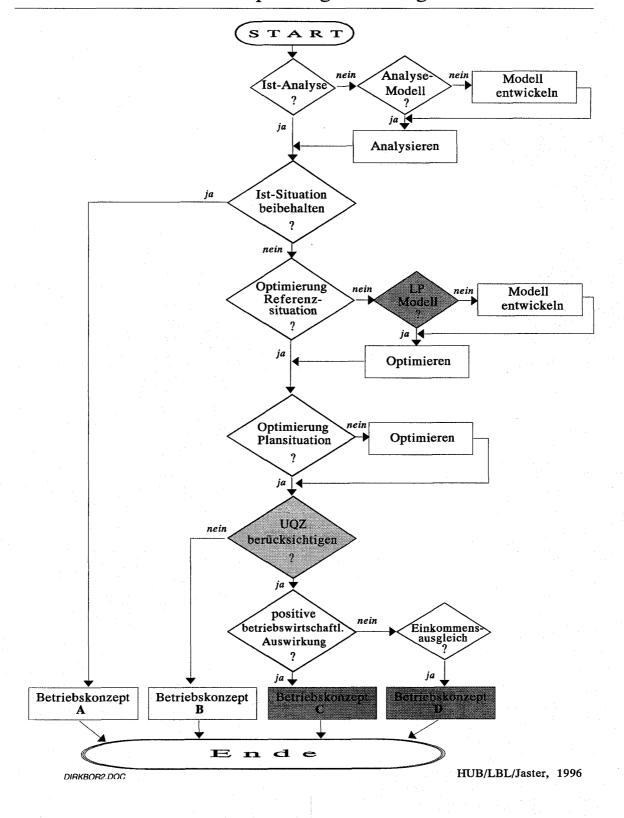
- Baumol W.J., W.E. Oates (1990): The theory of environmental policy. Cambridge University Press, Cambridge.
- Biewinga, E. E. (1996), Regulatory Levies and Premiums to Reduce Mineral Surpluses, in: Proceedings of the workshop on: Mineral emission from agriculture, Oslo, January 25-28, 1996
- Helfand, G. E., House, B. W. (1996), Regulating Nonpoint Source Pollution under Heterogenous Conditions. mimeo, Giannini Foundation, University of California Davis, Davis.
- Hentschel E., Randall, A., Miranda, M.J. (1995): Enforcing Pollution Control Regulation Using Two Types of Instructions, a Reputation Indicator and Self-Reports, mimeo, Department of Agricultural Economics, August 1995, Ohio State University, Columbus.
- Hodge, I. (1996), Applying Land use Permits for the Control of Mineral Emissions from Agriculture,
 in: Proceedings of the workshop on: Mineral emission from agriculture, Oslo, January 25-28, 1996
- Hofreither, M.F., (1990): Landwirtschaft und Umwelt Situationsanalyse und Lösungsansätze. Club Niederösterreich (5), Wien.
- Hofreither, M. F. (1996): Ein statisches Simulationsmodell für Bodennutzungszertifikate, unveröffentlichtes Manuskript, Universität für Bodenkultur, Wien.
- Hofreither, M. F., F. Sinabell (1994): Zielsetzungen für eine Nachhaltige Landwirtschaft. Report Band 48, Umweltbundesamt, Wien.
- Hofreither, M.F., F. Rauchenberger (1995): Administrative versus ökonomische Einflüsse auf die Nitratbelastung von Grundwasser - Eine ökonometrische Analyse agrarstruktureller Einflußfaktoren. WPR-Forschungsbericht im Auftrag des BMLF (Forschungsprojekt Nr. 775/93), Wien.
- Kahnemann, D., Knetsch, J., Thaler, R. (1986): Fairness As A Constraint On Profit Seeking: Entitlements in the Market. American Economic Review, 76, 728-741.
- Lichtenberg, E., Penn, T. (1996), Groundwater Quality Policy under Uncertainty, mimeo, Department of Agricultural and Resource Economics, University of Maryland, College Park.
- Moxey, A., white, B. (1994), Efficient compliance with agricultural nitrate pollution standards, Journal of Agricultural Economics, 45 (1), S. 27-37.
- North, D. (1990): Institutions, Institutional Change and Economic Performance. Cambridge (Cambridge University Press).
- Siebert, H. (1992): Economics of the Environment. Springer-Verlag, New York Berlin.
- Stavins, R. N. (1995), Transactions costs and tradeable permits, Jounal of Environmental Economics and Mangement, 29, 2, S. 133-148.
- Tomek, H. (1995): Nachhaltige Sicherung von Grundwasservorkommen in Österreich. Schutz und Sanierung unter besonderer Berücksichtigung des Komplexes Landwirtschaft, Der Förderungsdienst, 43, S. 65-70.
- Werner W. (1996): Implementation and efficiency of contermeasures against diffuse nitrogen and phosphorous input into ground and surface waters from agriculture, in: Proceedings of the workshop on: Mineral emission from agriculture, Oslo, January 25-28, 1996.

Karl Jaster

Betriebsoptimierungsmodell zur ökonomischen Beurteilung umweltgerechter, nachhaltiger Landnutzung

Anlaß für die Entwicklung eines Betriebsoptimierungsmodells mit der oben genannten Zielstellung ist die im BMBF/DBU-Verbundprojekt: "Naturschutzmanagement in der offenen agrar genutzten Kulturlandschaft am Beispiel des Biosphärenreservates Schorfheide-Chorin", vorgesehene Quantifizierung der ökonomischen Auswirkungen der Umsetzung von Umweltqualitätszielen in die landwirtschaftliche Praxis. Dieses Projekt hat eine Laufzeit von 1994 bis 1997.

Unsere bisherige betriebswirtschaftliche Herangehensweise im Projekt war in erster Linie durch analytische und methodische Vorarbeiten geprägt. Erst in der jetzigen Phase können wir uns den eigentlichen Bewertungsproblemen zuwenden. Es wäre deshalb noch etwas verfrüht, sich abzeichnende Ergebnisse hier schon als sicher vorwegzunehmen.


Bei dieser Vorgehensweise ist das Betriebsoptimierungsmodell das entscheidende Instrumentarium für die Ermittlung der einzelbetrieblichen Auswirkungen von durchzusetzenden Umweltqualitätszielen (UQZ). Die *inhaltlichen Leitgedanken* für den gewählten Modellansatz waren folgende:

Wir können annehmen, daß für die Mehrheit der Landwirte eine dauerhaft-nachhaltige Landnutzung und die Beachtung spezieller Umweltqualitätsziele nur insoweit praktikabel sind, wie diese mit der wirtschaftlichen Effizienz des Unternehmens konform gehen. In erster Linie muß durch die Landwirte versucht werden, den Betriebsgewinn zu maximieren. Auf die wohl bekannten Tugenden der "guten bäuerlichen Praxis" im Hinblick auf eine umweltverträgliche Betriebsgestaltung kann nur wenig Rücksicht genommen werden, wenn sich daraus ökonomische Vorteile nicht nachweisen lassen und sogar Zusatzkosten bzw. Erwerbsverluste in Kauf zu nehmen wären.

Um diesen offensichtlichen Konflikt zwischen Gesellschaft und den Wirtschaftssubjekten zu begrenzen, bedarf es geeigneter Maßnahmen des Interessenausgleichs. Hierbei geht es in erster Linie darum, herauszufinden, welche ökologischen Leistungen den Landwirten zum Schutz der natürlichen Ressourcen unentgeltlich zuzumuten sind und was die Gesellschaft als entgeltwürdig anerkennen soll (SRU, 1996). Hier stellt sich ein Abgrenzungsproblem, das im Zusammenwirken zwischen naturwissenschaftlichen und ökonomischen Fachleuten gelöst werden muß.

Abbildung 1: Programmablauf der Betriebsplanungsrechnungen

Programmablauf der Betriebsplanungsrechnungen

Bei konkreten Bewertungsschritten ergeben sich wenigstens zwei inhaltliche und methodische Schwierigkeiten, nämlich:

- a) der gesellschaftliche Bedarf an dauerhaft-nachhaltiger Landnutzung bzw. zu realisierender spezieller Umweltqualitätsziele muß in Form von Umweltindikatoren bis zur Betriebsebene differenziert benannt werden können, und
- b) es muß ein entsprechendes Mengengerüst für die Indikatoren geben, damit die Ermittlung der einzelbetrieblichen ökonomischen Auswirkungen möglich wird.

Als Betriebswirtschaftler lasse ich mich davon leiten, daß umso mehr Akzeptanz für die gemeinsame Bewältigung dieses genannten Konfliktes bei den Landwirten vorausgesetzt werden darf, je standortbezogener und betriebsindividueller diese Auseinandersetzung zu führen möglich ist und je plausibler die Bewertungskriterien für die Landwirte sind.

Für uns ergab sich daraus, die ökonomischen Auswirkungen von umweltzielorientierten nachhaltigen Bewirtschaftungsformen für reale Betriebe zu bestimmen. Methodisch kann das bekanntermaßen am besten mit Modellen der Linearen Programmierung bewältigt werden. Das grundsätzliche Konstruktionsprinzip für die Betriebsebene besteht dann darin, die Produktionsverfahren und ihre Verknüpfung zum Produktionsprogramm in den Mittelpunkt der Betrachtung zu stellen.

Die Anwendung dieser Modellmethode hat u.a. folgende Vorteile:

- Alle Indikatoren für die genannten Fragestellungen müssen nach Quantifizierbarkeit selektiert werden.
- Es können alle für den aus Umweltaspekten bedeutsamen Stoffkreislauf relevanten Inputs und Outputs erfaßt werden.
- Es ist durch Planungsszenarien möglich, die Wirkungen unterschiedlich eng gesetzter Anforderungen an eine dauerhaft-nachhaltige Landnutzung bzw. zielorientierter Produktionsverfahren auf den Betriebserfolg nachvollziehbar zu ermitteln und mit den Landwirten zu erörtern.
- Umweltmanagement wird als Bestandteil von Planung, Durchführung und Kontrolle integrierbar, indem es so den gewohnten Denkmustern der Betriebsleiter bei der Ausübung dieser üblichen Funktionen im landwirtschaftlichen Unternehmensmanagement entspricht.

In folgendem sehr vereinfachten Schema wird der Modellaufbau angedeutet:

Betriebsmodell "AGROPLAN"

	1	F	flar	ızeı	۱ -	Ti	erp	ro-		Zu/	Ver	-	A	rbe	it	St	all-	
Matrixstruktur		рі	odu	ıkti	on	dι	ıkti	on		kä	ufe					plä	tze	
		ej.	-						and the second s	<u>-</u>				ent		tition	ion	gemein
© Jaster, Filler: HU Berlin Schnabel: extern, 1996	Flächen	Marktfrüchte	Stillegung	Ackerfutter	Grünland	Produktion	Verkauf	Zukauf	Tiere	Düngemittel	Sonstiges	Futtermittel	Produktion	Management	Saison-Ak	ohne Investition	mit Investition	Betrieb allgemein
Zielfunktion Gewinn> Max																		
Obere, untere Schranken																		
Ausdehnung, Grenzverlustwerte																		
Flächen biolog. Grenzen																		
Stillegung																		
Nährstoffe N.P.K.Ca																		
Humus Humuseinheiten																		
Bilanz fossile Energie																		
Bilanz organische Stoffe																		
Produktionsquoten			·															
Sonstige Begrenzungen																		
Futterbilanzierung																		
Arbeitswirtschaft	1																	
Erosion																		
Tierbilanzen Rind/Schaf/Pferd																		
Schwein/Geflügel																		
Kapazitäten Stallplätze																		
Andere Erträge/Aufwendungen	 																	

Einige Merkmale, die die Konstruktion bestimmen:

- Es handelt sich um ein statisches Modell, Erträge werden exogen vorgegeben, ertragsabhängige Kosten werden angepaßt.
- Das Grundgerüst der ca. 230 Aktivitäten folgt annähernd der Festlegung planungsrelevanter Produktionsverfahren der pflanzlichen und der tierischen Produktion. Spezielle Anforderungen, wie geringe Intensitätsstufen oder biotische Naturschutzziele, können besonders berücksichtigt werden. Dazu gehören außerdem Spalten, in denen die Stallplatzstruktur der Betriebe erfaßt wird. Ebenso sind in notwendigem Umfang Zu- und Verkaufsaktivitäten sowie einige andere Aktivitäten enthalten, die für ein Unternehmen wirtschaftlich bedeutsam aber auch für die Stoffkreislaufbilanzierung unentbehrlich sind.
- In derzeit etwa 130 Zeilen sind zunächst die für Betriebsplanungsrechnungen gewohnten Kapazitätsbegrenzungen z. B. für die Fläche, die biologischen Anbaugrenzen, die Quoten, die Arbeitskapazität nach Zeitspannen und die Stallplatzbegrenzungen verankert. Der Zeilenvektor ist aber der eigentliche Bereich, in dem die Anforderungen an die umweltgerechte nachhaltige Landnutzung zu plazieren sind.
- Deshalb spielen in unserem Betriebsmodell verschiedene Bilanzen des Stoffkreislaufes eine besondere Rolle. Das betrifft die Nährstoffbilanzierung, die Humusbilanzierung, die Erosion, die Futterbilanzierung. Die Bilanz für fossile Energie ist noch Option, ebenso wie eventuell die Grundwasserneubildung.
- Die Ausgestaltung in diesem Bereich bedarf einer besonders intensiven Abstimmung zwischen den Naturwissenschaftlern und den Ökonomen. Unsere Partnerschaften u. a. mit dem Institut für Agrartechnik (ATB) Potsdam und dem Institut für Acker- und Pflanzenbau der Universität Halle haben hierbei ein gutes Niveau.

Ergebnisse, wie wir sie mit der Optimierungsrechnung erwarten, will ich an einem Fallbeispiel auszugsweise darstellen: Wir haben es mit einem Futterbaubetrieb in Mecklenburg-Vorpommern zu tun.

Abbildung 3: Kapazitätsausstattung Futterbaubetrieb

Futterbaubetrieb in	Mecklenburg-V	orpommern or a second s	
			•
Standort:		D 3	
Ackerzahl		31	
Niedermoorgrünla	and		
Ausstattung:			
Ackerfläche	ha	1620	
Grünland	ha	554	
LF gesamt	ha	2174	
Milchqote	dt	82437	
Milchkühe	Stück	1178	
Milchleistung	kg/Kuh	7000	
Viehbesatz	VE/10	0,80	
	0 ha		

Unser Optimierungsversuch hat zum Ziel, die Nachhaltigkeit der Wirtschaftsweise an den Indikatoren Humusbilanz und Wassererosion zu prüfen und die Flexibilität der Futterbilanzierung zu testen.

Wir nehmen drei Planvarianten:

- I. negative Humusbilanz
- II. ausgeglichene Humusbilanz über Kartoffelreduzierung und Kleegrasanbau
- III. ausgeglichene Humusbilanz über Futtererbsenanbau

Abbildung 4: Ergebnistabelle Anbaustruktur

Betriebsmodell "AGROPLAN" **P1** P3 **Optimiertes** Humuszukauf = 0 Humuszukauf = 0 IST Kartoffeln wie P1 Anbaustruktur (ha) Futter wie P1 Winterweizen 50 50 50 Wintergerste 515 574 268 Triticale 180 180 180 206 Winterraps 206 206 Körnererbsen 0 0 248 Speisekartoffeln spät 8 8 Stärkekartoffeln 83 20 83 Dauerbrache 152 152 152 mehrj. Feldgras, frisch 45 45 Kleegras, Frischfutter 0 0 50 Silomais 381 381 381 344 344 Wiese, Welksilage extensiv 332 Umtriebsweide 140 140 152 Portionsweide 70 70 70

P2

- Humuszehrer Stärkekartoffeln werden eingeschränkt,
- Wintergerste wird ausgedehnt,
- Kleegras kommt gegen Feldgras, es ergeben sich kleine Änderungen in Graslandnutzung, →die Futterbilanz funktioniert!

P3

- Kartoffeln und Futter wie P1 gesetzt,
- Futtererbsen einzige Alternative, = 248 ha!

Abbildung 5: Ökonomische Ergebnisse und Umweltindikatoren Humus:

Futtererbsen einzige Alternative, = 248 ha! Betriebsmodell "AGROPLAN"

_	P1	P2	P3
in the state of th			
Zielfunktionswert (%)	100	98	88
Humusbilanz (Humuseinheiten)			
Humuszehrer	-1344	-1270	-1093
Marktfrüchte	-666	-706	-415
Hackfrüchte	-164	-50	-164
Ackerfutter	-515	-515	-514
Humusmehrer	123	166	249
Körnerleguminosen	0	0	126
Ackerfutter	47	90	47
Brache	76	76	76
Organischer Dünger	1068	1104	844
Rindergülle	597	597	597
Stroh	470	507	247
Bilanz	-153	0	0
Betriebswert Humus (DM/dt HE)		-10	-54
Erosionswirkung (Punkte)	2677	2569	2282

Humus:

- Husmusbilanz in Ausgangsvariante P1 = 87 Erfüllungsgrad, Defizit 153,- HE
- Humusverzehr P1 und P2 verringert, gleichzeitig Humuszufuhr erhöht!
- Humuslieferstruktur im Zusammenhang mit Anbaustruktur verändert.
- Betriebswerte P1 = 10,- DM/dt HE, entspricht ca. 300,- DM/ha Kleegras

P2 = 54,- DM/dt HE, entspricht ca. 330,- DM/ha Körnererbsen

Die Betriebswerte drücken bei Mindestforderungen der Humusbilanz aus, daß sich der Wert der Zielfunktion um den Betrag des Betriebswertes erhöhen würde, wenn auf eine Humuseinheit (HE) verzichtet würde. Die Betriebswerte sind also gewissermaßen als Preis je HE aufzufassen,

Wassererosion: von P1 nach P2 4 % leicht verbessert, von P1 auf P3 15 % spürbar verbessert. Die geringeren Werte sind die günstigeren.

Der zu Beginn formulierte Anspruch des Modells, für eine größere Zahl von Betrieben bei vorher nicht bekannten Strukturen einsetzbar zu sein, ist nur durch ausreichende Flexibilität zu erreichen. Dazu haben wir verschiedene Möglichkeiten der Konstruktion und des Datenmanagement genutzt. Insbesondere die Möglichkeit der Verknüpfung zwischen der eigentlichen LP-Matrix und Exceldateien für die Anpassung von Inputdaten bzw. die Aufbereitung der Ergebnistabellen bietet hierfür außerordentlich nutzerfreundliche Lösungen.

Gerd Breitschuh, Hans Eckert

Effiziente und umweltverträgliche Landnutzung

Ein Konzept für eine marktwirtschaftlich organisierte Landbewirtschaftung

Die bedarfsgerechte Versorgung in Mitteleuropa mit qualitativ hochwertigen Nahrungsgütern und die Bereitstellung von Industrierohstoffen bei gleichzeitiger Erhaltung und Pflege der Kulturlandschaft sind die herausragenden Leistungen der europäischen Landwirte. Dennoch steht die Landwirtschaft heute in der öffentlichen Diskussion. Dem Wirtschaftszweig wird vorgeworfen, mit hoher Intensität Überschüsse zu produzieren, die Umwelt zu belasten und zunehmend Subventionen zu beanspruchen.

Die Krise der Landwirtschaft ist vor allem eine Zielkrise, die es erfordert, Aufgaben, Rollenverständnis und Zukunftserwartung der Landwirtschaft in einer industriell hochentwickelten Gesellschaft neu zu bestimmen. Kann sie in die marktwirtschaftlich orientierte und liberalisierte Volkswirtschaft integriert werden oder ist ihr eine Sonderrolle zuzuweisen? Diese Fragen müssen im Rahmen eines integrierten Konzeptes für den ländlichen Raum beantwortet werden.

Ausgangssituation

Landwirtschaft ist nicht nur Nahrungsmittelerzeugung. Als größter Flächennutzer erhält bzw. produziert sie öffentliche Güter, die bei einem Rückzug der Landwirtschaft aus der Fläche gefährdet sind. Dazu gehören:

- · die potentielle Versorgungssicherheit,
- die Infrastruktur des ländlichen Raums,
- die gewohnte Kulturlandschaft,
- der Artenreichtum der agrarischen Offenlandbiotope,
- aber auch die Recyclingfunktion f
 ür organische Abf
 älle.

Diese Güter können nicht wie Nahrungsmittel importiert werden. Sie sind an eine intakte und weitgehend flächendeckende Landnutzung gebunden. Landwirtschaft tritt somit immer sowohl als Produzent von Marktprodukten als auch von öffentlichen Gütern auf. Sind letztere gefährdet, aber unverzichtbar, so sind öffentliche Gelder zu deren Schutz berechtigt und angezeigt. Dies gilt umso mehr, als der Verlust dieser öffentlichen Güter normalerweise irreversibel ist und daher Vorsorgestrategien nötig macht.

Die Gemeinsame Agrarpolitik der EU (GAP) trägt diesem Vorsorgecharakter insofern Rechnung, als die Trennung von Markt- und Einkommenspolitik derzeit eine hohe politische Präferenz für eine flächendeckende Landwirtschaft erkennen läßt. Ohne diese Maßnahmen ist Landwirtschaft heute nur noch auf extrem begünstigten Standorten machbar.

Obwohl die eingesetzten Mittel de facto das Entgelt für den Erhalt der oben genannten öffentlichen Güter sind, haben sie de jure den Charakter von Subventionen. Es sind Einkommensübertragungen ohne definierte Gegenleistung. Das schadet der öffentlichen Akzeptanz des Berufsstandes und bedeutet eine Abkehr von der Leistungsorientierung; es wirkt demotivierend und begünstigt marktwidriges Verhalten.

Gegenwärtige Probleme

- 1. Das Überangebot an billigen Agrarprodukten gefährdet die Produktion auf weniger begünstigten Standorten und erfordert kostenaufwendige staatliche Regelungen zur Mengenbegrenzung.
- 2. Die schwierige Einkommenssituation der Landwirtschaft verlangt steigende Subventionierung, die jedoch den Rückzug aus der Fläche nur aufschieben, aber letztlich nicht verhindern kann.
- 3. *Umweltbelastende Produktionsverfahren* gefährden Natur und Nachhaltigkeit, diskreditieren den Berufsstand und führen zu einer Flut von Rechtsverordnungen und Förderinstrumenten, die einengen und das innovative Potential lähmen.
- 4. Die *Kulturlandschaftsentwicklung* ist durch Zielkonflikte gekennzeichnet. Diese bestehen vor allem zwischen naturschutzfachlichen und landeskulturellen Zielen einerseits und dem Effizienzgebot einer wettbewerbsfähigen Landwirtschaft andererseits und verlangen neue administrative und rechtliche Regelungen.
- 5. Das Image eines Subventionsempfängers verdeckt die Doppelfunktion der Landwirtschaft. Sie schützt und erhält öffentliche Güter, für die ihr öffentliche Mittel zustehen. Einkommensübertragungen ohne definierte Gegenleistung verwandeln aber die der Landwirtschaft zustehenden Mittel in Subventionen, die der öffentlichen Akzeptanz abträglich sind.

Das EULANU-Konzept

Übergeordnetes Anliegen ist eine weitgehend flächendeckende und multifunktionale Landbewirtschaftung, die Effizienz und Wettbewerbsfähigkeit mit Umweltverträglichkeit und Kulturlandschaftserhalt verbindet, und die innerhalb einer hochentwickelten Industriegesellschaft gleichberechtigt ihren Platz behaupten kann.

Kernpunkte des Konzeptes sind:

- 1. Kulturlandschaftsentwicklung als gesellschaftliche Dienstleistung, indem der Landwirt eine im Konsens gewünschte und ökologisch intakte Kulturlandschaft gestaltet und pflegt. Die dafür erforderlichen Leistungen sind dem Bewirtschafter zu vergüten.
- 2. Überschußabbau durch Etablierung marktentlastender Maßnahmen, die auch bei weiterer Liberalisierung (WTO, Öffnung osteuropäischer Agrarmärkte) wirksam sind und eine weitgehend flächendeckende Landnutzung ermöglichen.

- 3. *Umweltsicherung* durch Vorgabe von Toleranzbereichen für alle diskutierten Umweltwirkungen, die einen Rahmen abstecken, über den sich standortspezifisch Umweltverträglichkeit definiert.
- 4. Einkommenssicherung durch Flexibilität, indem sich der Landwirt als Nahrungsmittelerzeuger, als Biorohstoffproduzent und als Landschaftspfleger betätigt.
- 5. Verwendung bisheriger Einkommensübertragungen zur Vergütung für definierte gesellschaftliche Leistungen.

Kulturlandschaftsentwicklung als Dienstleistung

Gefährdungen für Aussehen und Funktion der Kulturlandschaft ergeben sich durch

- a) den wirtschaftlich bedingten Rückzug der Landwirtschaft aus weniger begünstigten Lagen,
- b) eine weltmarktorientierte und zur Rationalität gezwungene Landwirtschaft, die die regional gewünschte Kulturlandschaft nicht mehr als Koppelprodukt bewahren kann und
- c) übermäßigen Flächenentzug durch Verkehr und Gewerbe,

Vor allem der Konflikt zwischen dem Effizienzgebot einer wettbewerbsfähigen Landwirtschaft und naturschutzfachlichen und landeskulturellen Zielen ist nur lösbar, wenn der Erhalt der Kulturlandschaft unabhängig von der Nahrungsmittelproduktion als Dienstleistung erbracht wird. Indem die Kosten ermittelt werden, die nötig sind, um eine im öffentlichen Konsens gewollte Kulturlandschaft herzustellen und zu erhalten, werden diese Leistungen auch bewertbar.

Als methodisches Instrument dient ein Agrarraumnutzungs- und -pflegeplan (ANP), der in Zusammenarbeit mit der Naturschutzverwaltung, der Kommunalvertretung und der Landwirtschaft entsteht. Dieser ANP konzipiert auf der Grundlage regionaler Leitbilder und Landschaftsplanungen flurstücksgenau die Nutzung des Agrarraums sowie die Ausstattung der Feldflur mit ökologischen und landeskulturellen Vorrangflächen. Gleichzeitig werden die erforderlichen Kosten zur Anlage und Pflege von Biotopen und Flurelementen ermittelt, sowie Kosten, die mindestens nötig werden, um Acker-und Grünlandflächen im Sinne des ANP offen zu halten und zu pflegen. Damit wird erreicht:

- Kenntnis der erforderlichen Mittel zur Gestaltung und Erhaltung der öffentlich gewünschten Kulturlandschaft
- Schaffung eines Instruments zur Kontrolle und Bewertung der Durchführung
- Gestaltung und Entwicklung einer Kulturlandschaft, für die öffentlicher Konsens besteht (Integration von landwirtschaftlichen, naturschutzfachlichen und Bürgerinteressen)

Der Landwirt hat Anspruch auf Kostenerstattung, wenn er diese Kulturlandschaft entsprechend den Vorgaben des ANP durch umweltverträgliche Nutzung gestaltet, pflegt und entwickelt.

Überschußabbau durch Etablierung marktentlastender Maßnahmen

Dem derzeitigen Überangebot an billigen Nahrungsmitteln ist auf Dauer nicht mit Produktionseinschränkungen (Flächenstillegung, Extensivierung) zu begegnen. Volkswirtschaftlich sinnvoll und zugleich wirkungsvoller ist der zusätzliche Flächenbedarf durch den Anbau nachwachsender Rohstoffe, insbesondere durch Bioenergieerzeugung. Dafür sprechen agrar-, energie- und umweltpolitische Gründe:

Aus agrarpolitischer Sicht

- sind nachwachsende Rohstoffe Flächenkonkurrenten für Nahrungs- und Futterpflanzen;
 sie können den Nahrungsmittelmarkt entlasten und machen den Landwirt unabhängig von dessen Zufälligkeiten,
- sichert Biomasse zur Energieerzeugung die regionale Flächennutzung, weil der hohe Transportaufwand wie ein Schutzzoll wirkt, der Billigimporte erschwert,
- ermöglicht der Biomasseanbau Investitionen und Arbeitsplätze und sichert damit die Infrastruktur des ländlichen Raums,
- erhält die Alternativnutzung die potentielle Versorgungssicherheit mit Nahrungsmitteln, weil deren Erzeugung jederzeit reaktiviert werden kann.

Aus energie- und umweltpolitischer Sicht

- wird das Photosynthesepotential der landwirtschaftlichen Nutzfläche zur Erzeugung erneuerbarer und nahezu CO2-neutraler Rohstoffe genutzt; damit werden Ressourcen geschont und CO2-Emissionen vermieden,
- steht die Bioenergieerzeugung aus Biomasse (z.B aus Holz und Stroh) an der wirtschaftlichen Rentabilitätsschwelle,
- besteht für erneuerbare und CO₂-neutrale Biorohstoffe ein potentiell unbegrenzter Bedarf;
 limitierend wirkt nur die verfügbare Fläche

Sicherung umweltverträglicher Produktionsverfahren

Umweltverträglichkeit muß meßbar sein. Das Festhalten an vagen, wenig operationalen und daher beliebig auslegbaren Begriffen schadet der Landwirtschaft zunehmend. Es führt nicht nur zum öffentlichen Vertrauens- und Akzeptanzverlust, sondern auch zu Bestrebungen, die "umweltverträgliche Landwirtschaft" von außen zu definieren.

Nach EULANU ist umweltverträgliche Landbewirtschaftung eine dem Nachhaltigkeitsprinzip verpflichtete Landnutzung, die eine Beeinträchtigung von Boden, Wasser, Luft und belebter Natur kontrollfähig minimiert, und die aus Gründen der Ressourcenschonung das Photosynthesepotential der beschränkt vorhandenen Fläche effizient nutzt. Diese Definition anerkennt:

- a) Nachhaltigkeit bedeutet auch nachhaltige Versorgungssicherheit der Gesellschaft. Sie schließt folglich eine Entnahmewirtschaft ebenso aus, wie einen unkontrollierten und irreversiblen Entzug von Fläche aus der Produktionsfunktion.
- b) Beim Umgang mit Naturgütern sind Grenzen zu beachten, die im Interesse nachhaltiger Ernährungssicherung, des Schutzes anderer Ökosysteme, der Wahrung begrenzter Ressourcen und aus ethischen Motiven (z.B. Tierhaltung, Artenvielfalt) nicht überschritten werden sollten.
- c) Nahrungsmittelerzeugung ist immer mit Umweltwirkungen verbunden. Diese k\u00f6nnen zwar minimiert, aber nicht vermieden werden und erfordern daher das Festlegen von Toleranzbereichen.
- d) Umweltentlastung durch CO₂-Vermeidung verlangt eine sowohl umweltverträgliche als auch effiziente Nutzung der beschränkt vorhandenen Fläche.

Umweltverträglichkeit ist folglich kein Intensitätsproblem, sondern die Frage nach einem verantwortbaren Toleranzbereich. Dessen Festlegung erfordert Abwägungen und unterscheidet,

- welches Ausmaß an Umweltwirkungen unvermeidbar mit Landwirtschaft verbunden bzw.
 im Interesse der Ernährungssicherung hinzunehmen ist und
- welches Ausmaß mit der nachhaltigen Wahrung des Agrarökosystems selbst oder mit dem Schutz anderer Ökosysteme künftig nicht mehr vereinbart werden kann.

Das Verfahren "Kritische Umweltbelastungen Landwirtschaft" (KUL) trägt dem Rechnung, indem es Toleranzbereiche für die wesentlichsten Umweltwirkungen absteckt. Über diese Toleranzspannen, die sich zwischen einem anzustrebenden Optimum und einer unerwünschten Belastung erstrecken, wird Umweltverträglichkeit definiert (Abb. 1). Damit wird erreicht, daß

- Landwirtschaftsbetriebe hinsichtlich Umweltverträglichkeit bewertet, miteinander verglichen und zielgerichtet beraten werden können,
- der Landwirt in die Lage versetzt wird, die Umweltverträglichkeit seiner Produktionsverfahren nachvollziehbar zu beweisen und entsprechende Anpassungsreaktionen einzuleiten.
- die gegenwärtige Diskussion versachlicht und eine Basis zur Verständigung zwischen Landwirtschaft und Naturschutz geschaffen wird,
- ein Instrumentarium entwickelt werden kann, mit dem Umweltverträglichkeit über ökonomische Anreize durchsetzbar wird und
- der Landwirt den ökologischen Rahmen kennt, in dessen Grenzen er sein betriebswirtschaftliches Optimum suchen kann.

Einkommenssicherung der Landwirtschaft

Das EULANU-Konzept führt zu einer Landwirtschaft, die - regional sehr unterschiedlich - neben der Nahrungsmittelerzeugung zwei weitere Einkommensquellen als Erzeuger von Biorohstoffen und als Landschaftspfleger hat (Abb. 2). Gemäß dem Doppelcharakter landwirtschaftlicher Tätigkeit soll der Landwirt sein Einkommen sowohl über

- den Verkauf von Marktprodukten als auch über
- Dienstleistungen zum Erhalt öffentlicher Güter beziehen.

Damit wird erreicht:

- Einkommenssicherung und Risikominderung durch Multifunktionalität
- Verwendung bisheriger Einkommensübertragungen (Subventionen) zur Vergütung für Dienstleistungen
- Sicherung der ökonomischen Nachhaltigkeit landwirtschaftlicher Betriebe
- Effizienz und marktwirtschaftliche Selbststeuerung

a) Einkommensquellen Nahrungsmittel und Biorohstofferzeugung:

Beide konkurrieren um die beschränkt vorhandene Fläche. Marktentlastung wird dann erreicht, wenn die Erzeugung erneuerbarer Rohstoffe flächenmäßig so ausgedehnt wird, daß regional erzeugte Nahrungsmittel knapp werden. Das sichert Nachfrage und bewahrt Preisstabilität. Die Energieerzeugung (Konversion von Biomasse zu Energie) gehört in die Hand des Landwirts, um

- die regionale Flächennutzung zu sichern,
- dem Preisdiktat von Rohstoffaufkäufern zu entgehen und
- · Handelsspannen selbst abzuschöpfen.

Vorbedingung zur effektiven Etablierung der Energieerzeugung ist deren verbesserte Wettbewerbsfähigkeit gegenüber Nahrungsmitteln. Das erfordert sowohl finanz- und ordnungspolitische Lenkungsinstrumente als auch praxisnahe Demonstrationsobjekte. Der Einsatz öffentlicher Mittel ist insofern berechtigt, als eine Gegenleistung in Form von CO₂-Vermeidung, Marktentlastung und regionaler Flächennutzung erbracht wird.

b) Einkommensquelle Kulturlandschaftsentwicklung

Das Einkommen ist der monetäre Gegenwert für die gesellschaftliche Dienstleistung Kulturlandschaftsentwicklung. Allerdings erhält der Landwirt dieses nur dann ungeschmälert, wenn die Vorgaben des ANP erfüllt und die Einhaltung der durch KUL gesteckten Toleranzbereiche belegt werden. Sowohl die Kulturlandschaftsentwicklung als auch die Umweltverträglichkeit der Produktionsverfahren sind damit ökonomisch durchsetzbar. Auf diesem finanziellen Sockel produziert der Landwirt subventionsfrei Nahrungsmittel und Biorohstoffe bzw. Bioenergie.

Verwendung bisheriger Einkommensübertragungen als Vergütung für Dienstleistungen

Das EULANU-Konzept geht grundsätzlich von einer Aufkommensneutralität für die öffentlichen Haushalte gegenüber der derzeitigen Gemeinsamen Agrarpolitik der EU aus. Das Konzept sieht öffentliche Mittel für folgende Dienstleistungen vor:

- Leistungen zum Erhalt einer funktionsfähigen und ökologisch intakten Kulturlandschaft
- CO2-Vermeidung durch nachwachsende Rohstoffe
- Damit stehen zwischen diesen Vergütungen und dem Einkommen des Landwirts immer gesellschaftlich notwendige Leistungen, die auch die öffentliche Akzeptanz der Landwirtschaft verbessern.

Nicht berührt werden öffentliche Gelder für bleibende Lenkungsabsichten des Staates.

Bedingungen zur Realisierung

Die Realisierung des Konzepts erfordert sowohl finanz- als auch ordnungspolitische Rahmenbedingungen.

- a) Zur Finanzierung der Kulturlandschaftsentwicklung: Die dafür nötigen Mittel bewegen sich in Abhängigkeit vom Naturraum zwischen 500-700 DM/ha. Sie sind somit völlig aufkommensneutral aus der Umwidmung bestehender Einkommensübertragungen, Fördermittel und Prämien zu erlangen, die dadurch den Charakter von Subventionen verlieren.
- b) Zur Etablierung des Flächenkonkurrenten müssen Absatzmöglichkeiten und eine verbesserte Wettbewerbsstellung von erneuerbaren Rohstoffen/Energie gegenüber Nahrungsmitteln geschaffen werden.

Das ist erreichbar, wenn

- ordnungspolitisch eine Vorrangstellung für den Einsatz erneuerbarer Energien vor allem im ländlichen Raum erreicht wird.
- Investitionszuschüsse der Landwirtschaft den Bau von dezentralen Biomasseheizwerken (BHW) ermöglichen,
- durch eine Vergütung für CO₂-Vermeidung die Wettbewerbsstellung der Biomasse verbessert wird und
- praxisnahe Demonstrationsobjekte gefördert werden.

Die dafür notwendigen Mittel können nur teilweise aus der Umwidmung bisheriger Subventionen kommen. Die CO₂-Vermeidung ist eine gesellschaftliche Leistung und als solche zu honorieren. Wird durch die Etablierung von nachwachsenden Rohstoffen bzw. Energie eine substantielle Marktentlastung erreichbar, werden Mittel aus dem Überschußmanagement von Nahrungsmitteln frei, die zur Finanzierung eingesetzt werden können.

Agrarpolitische Optionen

Der Einstieg in das EULANU-Konzept ist über mehrere Ansatzpunkte zu forcieren:

Kulturlandschaftsentwicklung als Dienstleistung

Die planungstechnischen Voraussetzungen und der wissenschaftliche Konsens zur Erstellung von Agarraumnutzungs- und -pflegeplänen auf Gemarkungsebene liegen vor. Der Beginn der Planungen einschl. Kostenermittlungen für die notwendigen ökologischlandeskulturellen Leistungen sind daher kurzfristig möglich. Damit erhalten sowohl Landwirtschaftsbetriebe als auch die Administration einen Überblick über die erforderlichen Mittel.

Etablierung des Flächenkonkurrenten

Als Flächenkonkurrent kommt aufgrund potentieller Absatzmöglichkeiten der Erzeugung von Bioenergie die Schlüsselrolle zu. Der Einstieg gelingt durch eine Kombination ordnungs- und finanzpolitischer Rahmenbedingungen, die Absatz und Wettbewerbsstellung der Biomasse verbessern. Erforderlich sind weiterhin beispielhafte, praxisnahe Referenzobjekte, die dem Landwirt die Übernahme erleichtern, praktische Anleitungen anbieten und die Umweltverträglichkeit der Erzeugung von erneuerbaren Rohstoffen demonstrieren.

Umwidmung öffentlicher Gelder

Die zur Realisierung des ANP erforderlichen Mittel kommen aus der Umwidmung öffentlicher Gelder. Während ein Teil von Einkommensübertragungen kurzfristig an die Erfüllung ökologisch-landeskultureller Leistungen gebunden werden kann, können andere Gelder erst freigelenkt und umgewidmet werden, wenn durch Etablierung der Biorohstoff-/Bioenergieerzeugung die Sicherung marginaler Standorte und eine spürbare Marktentlastung erreicht sind.

Sicherung der Umweltverträglichkeit

Bedeutung und öffentlicher Stellenwert der Umweltverträglichkeit erfordern überzeugende und schnelle Lösungsangebote der Landwirtschaft, die geeignet sind, den Wirtschaftszweig Landwirtschaft aus der Defensive herauszuführen. Die Einführung des Verfahrens "Kritische Umweltbelastung Landwirtschaft" (KUL), das Toleranzbereiche für alle relevanten Umweltwirkungen vorgibt, kann dieses Problem lösen. Da das Verfahren bereits weitgehend wissenschaftlich konsensfähig ist und auch das methodische Instrumentarium im wesentlichen vorliegt, kann die Einführung in die Praxis relativ kurzfristig erfolgen. Die Einführung muß durch ein Netz von Referenzbetrieben unterstützt und förderpolitisch abgesichert werden.

Wirkungen des Konzepts

Die Wirkungen des Konzepts sind daran zu messen, wie die eingangs erwähnten fünf Probleme der Landwirtschaft gelöst werden.

1. Das Überangebot an Nahrungsmitteln wird durch Etablierung von Flächenkonkurrenten mit nahezu unbegrenztem Bedarf (z.B. Bioenergie) abgebaut. Statt Wachstum kostenintensiv zu begrenzen, wird damit der Wertschöpfungsprozeß in ökologisch (CO₂-Vermeidung) und sozialverträgliche Felder umgelenkt.

- 2. Umweltbelastung ist nicht unmittelbar ein Intensitätsproblem, sondern durch Vorgabe von Toleranzbereichen (KUL) erkennbar und vermeidbar. Dadurch können Landwirtschaftsbetriebe ihre Umweltverträglichkeit beweisen, und sie können ökologisch bewertet, verglichen und zielgerichtet beraten werden. Zugleich werden für die Öffentlichkeit die Umweltwirkungen der Landnutzung transparent.
- 3. Die Kulturlandschaftsentwicklung wird durch einen ANP geregelt, der eine im Konsens gewünschte Kulturlandschaft als Dienstleistung für die Gesellschaft monetär bewertet und der gleichzeitig als Kontrollinstrument dient.
- 4. Das Einkommen der Landwirtschaft speist sich aus 3 nahezu unabhängigen Quellen. Das verbessert die Flexibilität und mindert das Risiko. Dabei sind die Einnahmen aus der Biomasseproduktion (vor allem bei Konversion in Bioenergie durch den Primärproduzenten) und für die Tätigkeit als Landschaftspfleger weitgehend den Zufälligkeiten des Marktes enthoben.
- 5. Das Image eines Subventionsempfängers wird durch Verzicht auf jegliche Einkommensübertragungen vermieden. Öffentliche Gelder werden im wesentlichen nur noch für zwei eindeutig definierte Forderungen ausgereicht: für die Etablierung marktentlastender Flächenkonkurrenten und für die Entwicklung der Kulturlandschaft. Dabei werden diese Mittel an die Einhaltung umweltverträglicher Toleranzbereiche (KUL) gebunden.

Weitere Wirkungen

- 6. Marktwirtschaftliche Orientierung wird durch die ausschließliche Einkommenserwirtschaftung am Markt erreicht. Das erlaubt unternehmerischen Spielraum, die Integration in die Volkswirtschaft und den Abbau öffentlicher Akzeptanzprobleme.
- 7. Sicherung einer flächendeckenden Landnutzung und Verzicht auf Flächenstillegung werden durch Etablierung nachwachsender Rohstoffe mit geringen Standortansprüchen und nahezu unbegrenztem Bedarf ermöglicht.
- 8. Erhalt der Infrastruktur des ländlichen Raums wird realisiert, indem der Biomasseanbau und der Einstieg in die regionale Energieerzeugung und Rohstoffverwertung sowie die landschaftsgestalterische Tätigkeit Investitionen im ländlichen Raum erfordern und Arbeitsplätze schaffen.
- Die Attraktivität des landwirtschaftlichen Berufsstandes wird entscheidend verbessert, weil der Einstieg in neue T\u00e4tigkeitsfelder vielseitige und attraktive Qualifikations-, Arbeitsund Organisationsstrukturen verlangt.
- 10. Ressourcenschonung und CO₂-Vermeidung wird vor allem durch Einstieg in die Bioenergieerzeugung ermöglicht.

Klaus Tampe

Kosten-Nutzen-Analyse zur Revitalisierung der mittleren und unteren Unstrut

Bei der im folgenden vorgestellten Projektskizze handelt es sich um ein Teilprojekt des Forschungsvorhabens "Entwicklung und Optimierung von Revitalisierungsmaßnahmen in der Unstrut-Aue durch ökologische und ökonomische Untersuchungen, Grund- und Sickerwasseranalysen zur Parametrisierung regionalspezifischer Leitbilder" (Gesamtdurchführung: Thüringer Landesanstalt für Umwelt), das im Rahmen des BMBF-Forschungsschwerpunktes "Elbe-Ökologie" finanziert und durchgeführt wird.

In diesem Projekt soll ermittelt werden, welche Kosten durch die Umsetzung eines von der PGNU/naturplan für die mittlere und untere Unstrutaue (Speicher Straußfurt bis Landesgrenze Thüringen) erarbeitetes Entwicklungskonzept bzw. einzelner Komponenten dieses Konzeptes hervorgerufen werden. Des weiteren sind die möglichen Nutzenstiftungen, die durch die Umsetzung zu erwarten sind aufzuzeigen und zu diskutieren. Anhand der ermittelten Kosten-/Nutzenstruktur ist fernerhin darzulegen, wo bei eingeschränkter Ressourcenverfügbarkeit Prioritäten bei der Umsetzung zu setzen sind. Im Anschluß daran sind mögliche Finanzierungsinstrumente aufzuzeigen und zu bezüglich ihres Beitrags zur Gesamtfinanzierung zu diskutieren. Aufbauend auf den Untersuchungsergebnissen soll zum Abschluß eine "Vision" zur weiteren Entwicklung der endogenen Potentiale skizziert werden, die die Perspektiven für eine naturschutzkonforme Regionalentwicklung der Unstrutaue aufzeigt.

Zusammenstellung eines Mengengerüstes

Als Basis für die gesamten ökonomischen Berechnungen und Bewertungen wird eine Zusammenstellung benötigt, anhand derer alle wesentlichen Inputs an Flächen und sonstigen Produktionsfaktoren, die für die Umsetzung des Entwicklungskonzeptes erforderlich sind, ermittelt werden können. Dieses Mengengerüst muß daher sowohl Auskunft über den Status quo und den angestrebten Zustand der Flächennutzung als auch über die erforderlichen Maßnahmen zur Erreichung des angestrebten Zielzustandes geben. Die wichtigsten Quellen für die Zusammenstellung des Mengengerüstes bilden die Arbeiten der PGNU/naturplan (1994, 1996) sowie die Agrarstrukturelle Vorplanung (AVP) für das Gebiet "Unstrutaue Gebesee - Sömmerda" (Thüringer Landgesellschaft mbH Erfurt 1996). Zusätzlich werden amtliche Statistiken, sonstige Literaturquellen sowie Expertenbefragungen hinzugezogen.

Soweit es für die ökonomische Betrachtung erforderlich ist, wird das der Entwicklungskonzeption zugrundeliegende Leitbild weiter konkretisiert, um so die erforderlichen Entwicklungsmaßnahmen komplett erfassen zu können. Da in den Planungsunterlagen nicht alle für die Kosten-Nutzen-Analyse notwendigen Angaben in der erforderlichen Form vorhanden sind, müssen zusätzlich eigene Arbeiten zur Schließung dieser Lücken durchgeführt werden (z.B. Planimetrierung der Kartengrundlagen oder Konkretisierungen der angestrebten Biotoptypen). Des weiteren werden die von der PGNU vorgeschlagenen Entwicklungsmaßnahmen hinsichtlich ihres Zielerfüllungsgrades eingeschätzt und ggf. spezifiziert, modifiziert bzw. erweitert. Sind alternative Entwicklungen bestimmter Bereiche im Rahmen des Entwicklungskonzeptes möglich, so werden diese in Form von unterschiedlichen Varianten berücksichtigt.

Grundsätzlich muß das Mengengerüst zu folgenden Fragestellungen Auskunft geben:

- Welche Flächen sind von der Entwicklungskonzeption betroffen (Flächenbilanz)?
- Wie werden die Flächen derzeit genutzt (Ist-Zustand)?
- Wie sollen die Flächen zukünftig genutzt werden bzw. sollen sie überhaupt genutzt werden und welcher Biotoptyp wird angestrebt (Soll-Zustand)?
- Welche Nutzungsrestriktionen sind auf einzelnen Flächen erforderlich, um den angestrebten Zielzustand mit hoher Wahrscheinlichkeit zu erreichen? Bei den landwirtschaftlich genutzten Flächen, die im Untersuchungsgebiet das Gros der betroffenen Flächen ausmachen, lassen sich je nach gewünschter Entwicklungsrichtung grob folgende Nutzungsrestriktionen unterscheiden:
 - Nutzungsänderung (Änderung der Nutzungsart und/oder Absenkung der Nutzungsintensität),
 - Beibehaltung der derzeitigen Nutzung (Intensivierungsverbot, Verbot der Nutzungsänderung),
 - Nutzungsaufgabe (Sukzession oder Pflege).
- Welche *Erstinstandsetzungsmaßnahmen* auf der Fläche bzw. am Fließgewässer sind erforderlich, um den Initialzustand für die gewünschte Entwicklung zu erreichen?
- Welche wiederkehrenden *Pflegemaßnahmen* sind auf der Fläche und am Fließgewässern erforderlich?
- Welche naturschutzkonforme Nutzung kommt für einzelnen Flächen in Frage?

Die Zusammenstellung des Mengengerüstes erfolgt zuerst für ein Teilgebiet (Bretleben bis Landesgrenze), für das eine Feinplanung existiert (PGNU/naturplan 1996). Danach erfolgt die Übertragung der Ergebnisse auf das gesamte Gebiet der mittleren und unteren Unstrutaue, für das allerdings nur eine grobe Planung existiert (PGNU/naturplan 1994).

Ermittlung der Kosten

Die im Rahmen der Untersuchung zu erfassenden Kosten lassen sich in die beiden Kategorien Entwicklungs-/Erhaltungskosten und Flächennutzungskosten unterteilen. Unter Entwicklungs-/Erhaltungskosten werden hier folgende Kostenelemente zusammengefaßt:

- Kosten der Erstinstandsetzungsmaßnahmen auf der Fläche und am Fließgewässer (z.B. das Anpflanzen von Gehölzen).
- Investitionen für regelmäßig zu erneuernde Anlagen, die für die Umsetzung des Entwicklungskonzeptes erforderlich sind.

- Kosten für Pflegemaßnahmen auf der Fläche und am Fließgewässer. Unter Pflegemaßnahmen sind wiederkehrende Eingriffe zu verstehen, bei denen keine oder nur im geringen Umfang verkaufsfähige Produkte erzeugt werden, deren Erlöse zur Abdekkung der entstehenden Kosten herangezogen werden können.
- Kosten für die Etablierung und/oder Erhaltung einer naturschutzkonformen Landnutzung. Unter naturschutzkonformer Landnutzung werden hier solche Nutzungen subsumiert, die speziellen Naturschutzrestriktionen unterliegen und durch die bestimmte ökologische Leistungen erbracht werden sollen. Da sich aufgrund fehlender Märkte für "ökologische Leistungen" (zum Thema "ökologische Leistungen" vgl. Werner et al. 1995), z.B. die Bereitstellung von Feuchtgrünland, keine Preise herausbilden können, werden ersatzweise die Herstellungskosten des gewünschten Gutes, in unserem Beispiel der Feuchtwiese, herangezogen. Von diesen Kosten sind ggf. die erzielbaren Erlöse aus dem Verkauf von gleichzeitig erzeugten marktfähigen Produkten (z.B. Fleisch und Milchprodukte) zu subtrahieren. Der Ausgleich einer möglichen Kostenunterdekkung, die in den meisten Fällen der naturschutzkonformen Nutzung zu erwarten ist, stellt die Bezahlung für die ökologische Leistung dar (vgl. z.B. TAMPE & HAMPICKE 1995). Wichtig ist bei der Ermittlung der Herstellungskosten, daß auch die fixen Kosten entsprechend berücksichtigt werden, um die gewünschte Nutzung mittel- bis langfristig zu sichern.

Bei der zweiten Kostenkategorie, den Flächennutzungs- oder "Verdrängungskosten" (BLÖCHLIGER et al. 1996), handelt es sich nicht um die Entlohnung für aktive Maßnahmen, sondern hierunter werden Verzichte auf mögliche Netto-Erträge verstanden, die entstehen, wenn durch die angestrebte Entwicklung andere mögliche und erlaubte volkswirtschaftlich rentable Nutzungen verdrängt werden. Der entgangenen Netto-Ertrag der rentabelsten verdrängten Nutzung stellt die volkswirtschaftlichen Opportunitätskosten der gewünschten Flächenentwicklung dar. Dies gilt allerdings nur im einfachsten Fall, nämlich wenn die verdrängte Nutzung nicht außerhalb des Untersuchungsgebietes durchgeführt werden kann. Ist eine Verlagerung der verdrängten Nutzung möglich, so vermindern sich die Opportunitätskosten und können im Extremfall Null betragen. Bei dieser Betrachtung ist darauf zu achten, daß Verteilungs- und Allokationseffekte strikt voneinander getrennt werden. Im Untersuchungsgebiet ist zu überprüfen, ob und in welcher Größenordnung Flächennutzungskosten durch die Verdrängung intensiver landwirtschaftlicher Nutzungssysteme oder den Kiessandabbau auftreten. Ausgewiesenes Bauland bzw. geplante Infrastrukturmaßnahmen sind von der Entwicklungskonzeption nicht betroffen. Ob weitere Nutzungskonkurrenzen bestehen ist im Verlauf der Projektbearbeitung zu analysieren. In dieser Untersuchung sollen keine detaillierten Einzelrechnungen zu den Flächennutzungskosten durchgeführt werden, sondern es wird lediglich ermittelt ob und in welcher Größenordnung Opportunitätskosten zu erwarten sind.

Sämtliche Kosten der Umsetzung der Entwicklungskonzeption werden als jährliche Kosten ermittelt, d.h. einmalige oder in größer Zeitabständen erforderlichen Investitionen werden in jährliche Stromgrößen (Renten bzw. Annuitäten) transformiert.

Im Gegensatz zum Teilprojekt EULANU der Thüringer Landesanstalt für Landwirtschaft (BREITSCHUH, in diesem Heft), das teilweise ähnliche Aspekte für einen Betrieb detailliert betrachtet und aus einzelwirtschaftlicher Sicht bewertet, wird in dieser Untersuchung eine vereinfachte überbetriebliche Betrachtung für das gesamte Gebiet der mittleren und unteren Unstrutaue vorgenommen und auch die nicht landwirtschaftlich genutzten Flächen und die Unstrut selbst werden mit einbezogen, um so die *volkswirtschaftlichen* Kosten für das gesamte Entwicklungskonzept zu ermitteln.

Erfassung von Nutzenaspekten

Den Kosten der Umsetzung der Entwicklungskonzeption stehen manifeste und potentielle Nutzenstiftungen gegenüber. Obwohl heute eine ganze Anzahl mehr oder weniger ausgereifter Verfahren existieren, mit denen der Nutzen einer Entwicklungskonzeption weitestgehend quantifiziert und monetarisiert werden kann, ist dies doch mit erheblichen Schwierigkeiten und einem hohem Aufwand verbunden. Der Nutzen des Entwicklungskonzeptes kann sich in Form von marktgängigen Konsumgütern, nicht-marktgängigen emotionalen und ästhetischen Nutzenstiftungen oder produktiven Leistungen ergeben, wie folgende Beispiele verdeutlichen.

- Erhöhung der nutzbaren Fischbestände;
- Erhöhung des Erholungswertes der Landschaft mit positiven Auswirkungen für den Fremdenverkehr u.ä.;
- Verbesserung der Gewässerqualität durch die Erhaltung bzw. Verbesserung des Selbstreinigungspotentials;
- Vermeidung bzw. Verminderung von Hochwasserschäden am Unterlauf durch die Schaffung von Retentionsflächen;

Da im Rahmen dieses Projektes keine aufwendigen Verfahren zur Nutzenermittlung (z.B. Zahlungsbereitschaftsanalysen) durchgeführt werden können, sollen statt dessen die möglichen Nutzenstiftungen aufgezeigt und bezüglich ihrer möglichen Größenordnung anhand von Literaturangaben diskutiert werden.

Auf der Grundlage der ermittelten Kosten-/Nutzenstruktur wird eine Bewertung des Entwicklungskonzeptes vorgenommen und Empfehlungen für mögliche Prioritätensetzungen bei der Umsetzung erarbeitet.

Finanzierungsmöglichkeiten

Neben der Ermittlung der Kosten und der Abschätzung der Nutzen sollen auch mögliche Finanzierungsinstrumente aufgezeigt und ihr Beitrag zur Gesamtfinanzierung diskutiert werden. Im folgenden sind einige Finanzierungsmöglichkeiten exemplarisch aufgeführt:

- die Umwidmung von vorhandenen Mitteln, die bisher anderweitig eingesetzt werden,
- die Akquisition von Fördermitteln (EU, Bund, Land) zur Anschubfinanzierung bzw. zur Entlohnung von ökologischen Leistungen,

- die Gewinnung von Sponsoren,
- die Durchführung bezahlter Führungen etc.,
- die Beteiligung der sonstigen Nutznießer (z.B. Gastronomie, Fremdenverkehr) an den Kosten, in Form einer Naturtaxe o.ä.,
- die Verbesserung der Erlössituation bei naturschutzkonform erzeugten verkaufsfähigen Produkten (z.B. Fleisch, Milchprodukte) durch die Erzeugung hochpreisiger Spezialitäten (z.B. Fleisch von Auerochsenrückzüchtungen; eine kleine Herde dieser Tiere existiert seit kurzem in der Unstrutaue) und/oder durch eine Verbesserung der Vermarktung.
- den Einbezug von Ausgleichs- und Ersatzmaßnahmen.

Vision

Aufbauend auf den Untersuchungsergebnissen soll eine "Vision" zur weiteren Entwicklung der endogenen Potentiale skizziert werden, die die Perspektiven einer naturschutzkonformen Regionalentwicklung in der Unstrutaue aufzeigt. Die zu erwartenden positiven Effekte der Entwicklung, z.B. im Bereich Naherholung/Fremdenverkehr, bei der Produktion gesunder und naturschutzkonform erzeugter Nahrungsmittel, als gefragtes Wohnumfeld für Mitarbeiter örtlicher Unternehmen sind in der Vision darzulegen. Durch das Aufzeigen solcher Entwicklungsmöglichkeiten sollen die manifesten und potentiellen Nutznießer einer solchen Entwicklung (Naturschutz, Landwirtschaft, Fremdenverkehr, Gastronomie usw.) dazu veranlaßt werden sich zusammenzuschließen, um Synergieeffekte auszunutzen und gleichzeitig verstärkt Einkommensströme in die Region zu leiten. Insbesondere der letzte Aspekt ist als Anreiz zum Mittun von Wirtschaftssubjekten von Bedeutung. Gute Ansätze für ein solches Vorgehen finden sich bspw. beim Biosphärenreservat Rhön.

Literatur

- Blöchliger, H., U. Hampicke & G. Langer (1996): Schöne Landschaften: Was sind sie uns wert, was kostet ihre Erhaltung? In: Jahrbuch Ökologie 1996. München, S. 136-150.
- PGNU/naturplan (1994): Biotoptypenkartierung und Entwicklungskonzeption für die Mittlere und Untere Unstrut - Speicher Straußfurt bis Landesgrenze. Im Auftrag der Thüringer Landesanstalt für Umwelt. Jena. Unveröffentlichter Abschlußbericht.
- PGNU/naturplan (1996): Erweiterter Pflege- und Entwicklungsplan Unstrut. Abschnitt Bretleben bis Landesgrenze. Im Auftrag der Thüringer Landesanstalt für Umwelt. Jena. Unveröffentlichter Abschlußbericht.
- Tampe, K. &. U. Hampicke (1995): Ökonomik der Erhaltung bzw. Restitution der Kalkmagerrasen und des mageren Wirtschaftsgrünlandes durch naturschutzkonforme Nutzung. Beih. Veröff. Naturschutz Landespflege Bad.-Württ. 83: 361-389.
- Thüringer Landgesellschaft mbH Erfurt (1996): Agrarstrukturelle Vorplanung "Unstrutaue Gebesee
 Sömmerda" (Landkreis Sömmerda). Im Auftrag des Flurneuordnungsamt Gotha. Erfurt.
- Werner, W., H.-G. Frede et al. (Hrsg.) (1995): Ökologische Leistungen der Landwirtschaft. Definiton, Beurteilung und ökonomische Bewertung. Frankfurt/M., Schriftenreihe agrarspectrum 24.

Gert Neubert, Peter Zube

Die sozioökonomische Betroffenheit der Landwirtschaft unter Berücksichtigung betrieblicher Anpassungsmöglichkeiten

Die Erfahrung zeigt, daß in gesamtgesellschaftlichem Interesse liegende Projekte an unzureichender Akzeptanz zu scheitern drohen, wenn die naheliegenden Interessen der unmittelbar Betroffenen nicht genügend beachtet werden. Mit dem Auftrag zur Bearbeitung des Themas "Die sozioökonomische Betroffenheit der Landwirtschaft unter Berücksichtigung betrieblicher Anpassungsmöglichkeiten" soll dieser Mangel behoben werden. Zum gegenwärtigen Zeitpunkt kann nur dargestellt werden, in welcher Weise vorgegangen werden soll; Ergebnisse liegen noch nicht vor.

Problemstellung

Aus der Realisierung der geplanten Rückverlegung des Elbdeiches im Raum Lenzen/Wustrow, der dort vorgesehenen Entwicklung von Auenwäldern und der vorrangig an Naturschutzzielen orientierten Flächenbewirtschaftung sind erhebliche Einschränkungen der landwirtschaftlichen Nutzung von Flächen (nahezu ausschließlich Grünland) zu erwarten. Damit gehen Vermögensverluste, Einkommenseinbußen aus landwirtschaftlicher Erwerbstätigkeit und Arbeitsplätzeabbau in der Landwirtschaft einher; im Extrem sind die Existenzgefährdung landwirtschaftlicher Unternehmen und eine Störung des sozialen Gefüges in der Region nicht auszuschließen. Überwiegend werden die Beeinträchtigungen über das Maß hinausgehen, welches ohne Anspruch auf Ausgleich bzw. auf Entschädigung hinzunehmen ist.

Bearbeitungsziele

Das Ziel der Bearbeitung des Themas besteht darin,

- die in Landwirtschaftsbetrieben wirkenden Ursachen und Motive für Skepsis oder gar Ablehnung bzw. für die Befürwortung einer Rückdeichung und primär auf den Naturschutz ausgerichteter Maßnahmen zu bestimmen,
- Alternativen für die Flächennutzung sowie Möglichkeiten zur Diversifikation betrieblicher Aktivitäten aufzudecken und damit auf die Minimierung der wirtschaftlichen und sozialen Betroffenheit gerichtete Anpassungsstrategien anzubieten,
- den Einfluß betrieblicher Faktorausstattung und der gegebenen Rahmenbedingungen auf die Möglichkeiten zur betrieblichen Anpassung zu quantifizieren,
- die Wirksamkeit unterschiedlicher Förderinstrumentarien zu beurteilen,

- Vorschläge zur Konfliktlösung durch abgewogene ökologische Zielstellungen, betriebliche Anpassungsstrategien und geeignete Förderungs- und Ausgleichsregelungen zu erarbeiten und auf diese Weise
- die für die Erarbeitung konsensfähiger umwelt- und agrarpolitischer Konzepte erforderlichen Erkenntnisse zu erweitern und dazu beizutragen, ein Scheitern derartiger Projekte an ökonomischen Grenzen abzuwenden bzw. solche Projekte von vornherein realitätsnäher zu erstellen.

Methode

In einem vorstrukturierten, aber dennoch offenen Interview (Tab.1) werden Eigentümer und Nutzer landwirtschaftlicher Nutzflächen im potentiell betroffenen Gebiet danach befragt werden, ob und aus welchen Gründen sie die geplanten Maßnahmen akzeptieren bzw. ablehnen - erstere, weil ca. 130 Eigentümer über Grund und Boden im betroffenen Gebiet verfügen - nur stichprobenartig, letztere ausnahmslos. In der ersten Bearbeitungsstufe der eigentlichen Betroffenheitsanalyse ist eine Analyse der Ausgangslage vorgesehen. Sie betrifft

- die flurstücksgenaue Erfassung der potentiell von der Rückdeichung betroffenen Flächen unter Angabe von Nutzungsart, Bodenwertzahl, Eigentümer und Nutzer,
- die Ermittlung der im betroffenen Gebiet wirtschaftenden Landwirtschaftsbetriebe, deren Struktur und der für ihre Beurteilung bedeutsamen Faktorausstattung und naturalen und ökonomischen Kennziffern,
- die Erfassung der f
 ür die Landwirtschaft relevanten F
 örderung,
- die Erfassung infrastruktureller Gegebenheiten als Voraussetzung zur Beurteilung landwirtschaftlicher und außerlandwirtschaftlicher alternativer Erwerbsmöglichkeiten.

Die erste Aufgabe ist weitgehend realisiert. Dabei sind wir davon ausgegangen, daß in der mit dem Projekt verfolgten Variante der Rückdeichung als potentiell betroffene Flächen (einschließlich der qualmwasserbeeinflußten) alle auf der gesamten Länge der Rückdeichung zwischen Elbe und Löcknitz gelegenen Flächen in Betracht kommen.

Tabelle 1: Strukturierung des Interviews zur Akzeptanzanalyse

Frage	Eigentümer	Bewirtschafter
Wird die Rückdeichung akzeptiert	Х	Х
aus Gründen des Hochwasserschutzes?	X	x
wegen ihrer Bedeutung für die Regenerierung		
von Auenwäldern und für den Artenschutz?		
Wird das Ausmaß der Rückdeichung für angemessen gehalten?	X	X
Welche Auswirkungen auf die Beschäftigungslage	Х	X
werden erwartet?		X
in der Landwirtschaft?		
in der Region?		
Gibt es Bereitschaft zum Flächenverkauf bzw.	X	X
Flächentausch?	X	X
zu welchen Bedingungen?		
Wird im Verkauf eine Chance für die Schaffung einer neuen Existenzgrundlage gesehen?	X	
Gibt es Vorbehalte bezüglich eines Eigentümerwechsels?		Х
Mit welchen Auswirkungen auf die Einkommenslage wird infolge veränderter Bewirtschaftung der Flächen gerechnet?	X	Х
Werden Auswirkungen von existenzbedrohendem Ausmaß befürchtet?	Х	X
Welche Erwartungen bezüglich Ausgleichszahlungen gibt es?	Х	X
Welche landwirtschaftlichen und nichtlandwirtschaftlichen Alternativen werden angestrebt, und besteht die Hoffnung, sie realisieren zu können?	Х	Х

Als sehr problematisch erweist sich erfahrungsgemäß die Erfassung betriebsspezifischer ökonomischer Daten. Wir hoffen aber, mit der Kontaktaufnahme zu den landwirtschaftlichen Unternehmern im Zusammenhang mit der Befragung zur Akzeptanz der Maßnahmen das dafür erforderliche Vertrauen gewinnen zu können.

An die Datenerfassung durch Befragungen und durch die Analyse betrieblicher Abrechnungen wird sich eine ökonomische Bewertung der gegenwärtigen Betriebskonzepte und deren Umsetzung anschließen. Damit wird nach unserer Überzeugung die Ausgangslage für die Abschätzung der Betroffenheit fixiert werden müssen, weil dafür weder Werte aus Referenzbetrieben zur Verfügung stehen (solche Betriebe fehlen), noch eine die gegenwärtigen Bedingungen berücksichtigende Optimierung des Betriebes geeignet erscheint. Grundsätzlich gehen wir von dem Erfordernis einer einzelbetrieblichen, fallspezifischen Betroffenheitsermittlung durch Kalkulation von Kosten und Erlösen vor und nach Wirksamwerden der Rückdeichung aus. Was die Wahl der Referenzsituation, d. h. der Ausgangslage anbetrifft,

neigen wir dazu, nach dem Prinzip zu handeln: "Im Zweifelsfall zugunsten des Angeklagten!". D. h., werden durch ein Unternehmen gegenwärtig - aus welchen Gründen auch immer - die den Standort- und Rahmenbedingungen entsprechenden Potenzen nicht ausgeschöpft, sollte nicht ein theoretisches Optimum, sondern ein kalkulatorisch ermittelter Durchschnittswert als Bezugsbasis dienen. Die Wahrscheinlichkeit, daß auf diese Weise "Mitnahmeeffekte" realisiert werden, ist dabei nur gering. Bei überdurchschnittlich gut geführten Unternehmen sollte das "Ist" die Referenzgröße sein. Anderenfalls würden Können, Fleiß und Sorgfalt mißachtet werden. Grundsatz muß allerdings sein, daß nur solche ökonomischen Resultate angerechnet werden, die unter Einhaltung der an eine ordnungsgemäße Landwirtschaft zu stellenden Anforderungen erwirtschaftet wurden.

Zeitlich parallel zur Bewertung der gegenwärtigen Bewirtschaftungskonzepte sollen die Beeinträchtigungen der Flächen nach Stärke, Häufigkeit und Dauer spezifiziert und deren Auswirkungen auf Pflanzenbestand, Ertrag und Erzeugnisqualität sowie auf die Bewirtschaftbarkeit der Flächen quantifiziert werden. Weil voraussichtlich zuverlässige Daten zur Wasserdynamik fehlen werden, sollen dabei unter Berücksichtigung von Prognosen auf Grund von Modellkalkulationen durch andere Projektpartner und von Erfahrungswerten aus der Region ausgewählte Szenarien unterstellt werden. Für die Abschätzung von Auswirkungen auf den Pflanzenbestand, auf den Ertrag und die Erzeugnisqualität wie auch für die Konzipierung von Nutzungsalternativen sind eigene Erfahrungen und aus der Literatur abzuleitende Empfehlungen, aber unbedingt auch Ergebnisse aus der Arbeit anderer Projektpartner, insbesondere der Humboldt-Universität, die Grundlage.

Die umfangreichste Aufgabe sehen wir in der Kalkulation angepaßter schadensmindernder Betriebskonzepte und schließlich der zu erwartenden Erwerbsverluste mit Hilfe eines in unserer Einrichtung speziell dafür entwickelten Betriebskalkulationsprogrammes. Die Höhe der Erwerbsverluste wird durch eine Vielzahl von Einflußfaktoren bestimmt, so z. B.

- vom Ausmaß der Beeinträchtigung landwirtschaftlicher Flächennutzung durch Rückdeichung (Überflutung, Vernässung), Auenwaldregenerierung und Naturschutzauflagen (evtl. Spätschnitt),
- von den Möglichkeiten zur Anpassung an ein vermindertes Futteraufkommen vom Grünland und
- vom Wirksamwerden alternativer Flächennutzungs- und Erwerbsmöglichkeiten.

Ausschlaggebend für unsere Herangehensweise ist aber vor allem, daß sie sich nur aus einer gesamtbetrieblichen Betrachtung ableiten läßt. Sie hängt ganz wesentlich vom Anteil der betroffenen Flächen an der betrieblichen Gesamtfläche ab und davon, ob trotz der zu erwartenden Veränderungen ein bestehendes bzw. angestrebtes, mehr oder weniger durch Investitionen vorfinanziertes Betriebskonzept weiterhin verfolgt werden kann, oder ob eine Veränderung des Betriebskonzeptes selbst notwendig wird.

Anpassungsreaktionen als Antwort auf vermindertes Futteraufkommen vom Grünland - die wohl unmittelbarste Folge der Rückdeichung - können je nach Situation sehr unterschiedlich ausfallen. Denkbar sind sowohl Ersatzbeschaffung von Futter als auch Maßnahmen zur Anpassung des Futterbedarfs (Tab. 2). Je nach Grad und Umfang der betrieblichen

Veränderungen zur Anpassung an die neue Situation sind Erwerbsverluste in unterschiedlicher Weise zu kalkulieren:

- Bei nur geringer Betroffenheit genügt eine vereinfachte Differenzrechnung betroffener Zweige,
- bei starker Betroffenheit, insbesondere bei erforderlichen Strukturveränderungen, werden Gesamtbetriebsrechnungen unumgänglich.

Tabelle 2: Anpassungsmaßnahmen an das verminderte Futteraufkommen vom Grünland

Anpassungsmaßnahme	Anwendung, Wertung			
A. Ersatzfutterbeschaffung				
Mehranbau von Ackerfutter oder Grün- landeinsaat	sofern anwendbar, meist billigste Varian- te; begrenzt bei starker flächiger Betrof- fenheit und hohem Grünlandanteil			
Grundfutterzukauf	bei stärkerer flächiger Betroffenheit und hohem Grünlandanteil; oft möglich und traditionell gehandhabt			
Mehreinsatz von Kraftfutter (Zukauf oder Eigenerzeugung)	zum Ausgleich geringerer Futterqualitä ten; begrenzt bei hohen Tierleistungen (besonders bei Milchvieh)			
Flächenzupacht	meist nicht möglich			
Intensivierung auf nicht betroffenen Flä- chen	oft bereits ausgeschöpft			
B. Futtereinsparung bzw. Futterbedarfsanpassung				
Viehbestandsabstockung	i. d. R. teuer und wegen geringer Tierbe- stände nicht erforderlich; bei starker Be- troffenheit unvermeidlich			
Vergabe von Vieh in Weidepension	nicht bei Milchkühen und Mastbullen			
Umstellung von Produktionsverfahren (z. B. Mutterkuh- anstelle von Milchviehhaltung)	bei starker Betroffenheit mit negativen Auswirkungen auf die Futterqualität un- vermeidlich; sozioökonomisch meist un- akzeptabel			

Fluß und Landschaft - Ökologische Entwicklungskonzepte¹⁷

4.1.1 Akzeptanz und Umsetzbarkeit

Akzeptanz und Umsetzbarkeit von Projekten mit dem Ziel einer umweltschonenden Landnutzung hängen häufig von Kriterien ab, die in der gängigen Planung selten systematisch beachtet werden. Am Beispiel der Umsetzung von Landschaftsplänen im Bereich der Landwirtschaft konnte mittels Akzeptanzforschung belegt werden, daß der Stellenwert sozialer Aspekte in der Planung im Interesse der Umsetzbarkeit dringend verbessert werden muß.

In vielen Planungen beschränkt sich die Analyse, von Kulturlandschaften überwiegend auf naturwissenschaftliche Planungsgrundlagen. Eine vergleichbar differenzierte Analyse der Interessen der Bevölkerung und deren Verhältnis zur Landschaft findet meist nicht statt. Es ist jedoch offensichtlich, daß die soziale Situation der Menschen, auf deren Grundstücken die Planung umgesetzt werden soll, ebenso wichtig ist wie die natürlichen Gegebenheiten eines Bearbeitungsgebietes. Zielaussagen in Kulturlandschaften können in der Regel nur in Zusammenarbeit mit den Trägern der örtlichen Landeskultur realisiert werden. Gerade im Bezug zu den Fließgewässern ist eine starke persönliche Verbundenheit der Anwohner zu erwarten, aus der Planungs- und Umsetzungsstrategien abzuleiten sind. Doch die Tatsache, daß die Umsetzung ökologischer Konzepte in ökologisches Handeln vielfach von sozialen Systemen ausgeht und nicht von Ökosystemen, ist bisher nicht Allgemeinwissen geworden. Gleichwohl wird die demokratische Stärke nutzerorientierten Planens häufig unterstrichen. Deshalb ist es sehr wichtig, Neuland im Bereich sozialer und verhaltensrelevanter Grundlagen zu betreten sowie Fragen der Akzeptanz gezielt anzusprechen, wenn mit dem Anspruch der Umsetzbarkeit untersucht und geplant wird.

Die nachfolgend aus dem Blickwinkel der Akzeptanzforschung speziell für die Umsetzbarkeit gewässerbezogener Entwicklungskonzepte vorgestellten Instrumente basieren auf Erkenntnissen aus einem mehrjährigen Forschungsvorhaben, aus dem auch Folgerungen zur instrumentellen Ergänzung der Landschaftsplanung durch den Gesetzgeber abgeleitet wurden.

Getragen wird dieser integrierte Zielfindungs- und Umsetzungsprozeß während der Vorbereitungs-, Abstimmungs- und Umsetzungsphase durch die Vision, daß von Anfang an nach konsensfähigen Lösungen gesucht wird, die auf fundierten Informationen und Grundlagen beruhen, deren Konsequenzen jedoch vor Ort verstanden, nachvollzogen und damit auch akzeptiert werden.

Nachdruck der beiden Kapitel "Akzeptanz und Umsetzbarkeit" sowie "Kostenermittlung und –bewertung" mit freundlicher Genehmigung des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e.V. (DVWK) aus dem DVWK-Merkblatt 240/1996 "Fluß und Landschaft - ökologische Entwicklungskonzepte". Nummerierung und Verweise entsprechen dem Orginal.

4.1.2 Vermittlung der Planungsinhalte

Bei Fragen der Akzeptanz sollen grundsätzlich mindestens drei wesentliche, in der Praxis häufig nicht klar getrennte Ebenen berücksichtigt werden: die der Entscheidungsträger, der amtlichen Vermittler und der Betroffenen.

Als wesentliche Erkenntnis aus dem genannten Vorhaben kann festgehalten werden, daß Akzeptanzprobleme viel häufiger aus Schwierigkeiten der Kommunikation zwischen den an der Planung beteiligten Gruppen als aus einer unqualifizierten Planung resultieren. Folgende Gründe für akzeptanzhemmende Kommunikationsprobleme treten häufig auf:

Vermittlungsschwächen und das Zurückhalten von Umweltwissen

Selten wird das mit großem wissenschaftlichen und finanziellen Aufwand gesammelte Umweltwissen allgemeinverständlich aufbereitet und vereinfacht an Entscheidungsträger oder Betroffene weitergegeben. So bekommen die Betroffenen nicht nur die "Arroganz der Mächtigen", sondern oft auch noch die "Arroganz der Wissenden" zu spüren, die in einem kleinen und elitär wirkenden Kreis über die Zukunft der Kulturlandschaft entscheiden. Experten sind sich selten bewußt, daß sie oft dieselbe Landschaft mit völlig anderen Augen sehen als die Bewohner. So nahmen z.B. Ergänzung landschaftsplanerischer Instrumente in keiner der untersuchten Gemeinden befragte Personen Landschaftsveränderungen über die gleichen Tierarten wahr, mit denen sich die Planer befaßten. Stets wurden allgemein bekannte Arten wie Rebhuhn und Feldhase genannt, während in den Gutachten indikatorisch bedeutsam Arten aus wenig bekannten Gruppen wie Käfer und Heuschrecken hervorgehoben wurden. Mehrfach konnte belegt werden, daß die Planer mit ihrer Sichtweise und Sprache nicht verstanden wurden selbst davon jedoch nichts ahnten. Soll aus geplanten Projektzielen, geändertes Handeln folgen, muß Akzeptanz (lat: "ac-ceptare" d.h. kapieren) auf der Nachvollziehbarkeit der Neuerungen beruhen. Erst dann können sie angenommen werden. Angesichts der geringen Zugänglichkeit von Fließgewässerdaten (z.B. der Indikatorarten) kann hier von großen Differenzen in der Umweltwahrnehmung zwischen Experten und Bewohnern ausgegangen werden. Dies ist bereits bei der Zusammenstellung der Parameter und Ziele der Bestandserfassung (vgl. Kap 2.2) zu berücksichtigen.

Die Vorgeschichte eines Projektes

Die meisten Gutachter und Planer verhalten sich so, als ob sie die Ersten vor Ort wären. Es wird selten bedacht, daß in der Vergangenheit oft schon viele andere Aussagen getroffen haben könnten, die eine negative oder positive Grundhaltung bei Entscheidungsträgern und Betroffenen hervorgerufen haben. Dabei stellen emotionale Vorbelastungen aus vorangegangenen negativen Schlüsselerlebnissen häufig einen wichtigen Grund für scheinbar irrationale Ablehnungsgründe dar. Selbst fachlich hochqualifizierte Planungen können an solchen, von vorangegangenen Planergenerationen verursachten "emotionalen Altlasten" scheitern.

Unabhängig von sich rasch ändernden politischen Rahmenbedingungen können zahlreiche Kriterien aus dem sozialen Umfeld einer Planung als "Bestimmungsgrößen lokaler Akzeptanz und Umsetzbarkeit" genannt werden.

Tabelle 13: Ergänzung landschaftsplanerischer Instrumente durch konsequentes Ermitteln sozialer und Vermitteln projektbezogener Kriterien LUZ, 1993,

Ermitteln:

Wahrnehmungs- und Bewertungsdifferenzen

Verhältnis zwischen Landwirten und Nichtlandwirten

Persönliche Wertschätzungen

Emotionale Vorbelastungen

Agrarstruktur, Zukunftsperspektiven für die Landwirtschaft, z.B. Vermarktungschancen für die Produkte aus extensiver Landwirtschaft

Fachkompetenz der Gemeinde in Umweltfragen

Vermitteln:

Weitergabe des gesammelten Umweltwissens und Schaffen von Umweltkompetenz durch:

Vereinfachte Aufbereitung und Darstellung von Expertenwissen

Betreuung von Arbeitskreisen zur Leitbildentwicklung

Vorträge und Begehungen mit Bürgern, Landwirten, Schulen

Beratung zur "Übersetzung" der Projektziele auf einzelbetriebliche Situationen, Klären von Fördermodalitäten

Entwickeln professioneller Vermarktungsstrategien

Fazit: Mehr ermitteln - besser vermitteln

Damit Konzepte zur Entwicklung ökologisch begründeter Entwicklungsstrategien tatsächlich "auf einem ganzheitlichen Ansatz beruhen" (vgl. Kap. 2), soll künftig die Ergänzung der Planung durch eine zusätzliche Ermittlung. der Einstellungen, Bedürfnisse und Kenntnisse von Bewohnern der Einzugsgebiete sowie Interessenvertretern und durch eine gezielte Vermittlungsphase vorgesehen werden.

Die Berücksichtigung dieser Kriterien in der Phase der Grundlagenermittlung kann helfen, Umsetzungshindernisse frühzeitig zu erkennen und im daraus resultierenden Planungs- und Kommunikationsprozeß abzubauen (Tab. 13). Die dazu notwendige "Bestandserhebung" bei den lokalen Akteuren soll in Form einer Akzeptanzvoruntersuchung eingerichtet werden, die parallel zu oder sogar vor der Ermittlung naturräumlicher Planungsgrundlagen durchgeführt werden soll. Dazu sind bereits einige ausführliche Gespräche mit den wichtigsten Vertretern gegensätzlicher Interessen ausreichend.

In der Phase der Vermittlung kommt es vor allem darauf an, die Planungsziele aus der Sprache der Experten in die Sprache oft ehrenamtlich tätiger Entscheidungsträger und der Betroffenen zu "übersetzen" sowie kontinuierlich kompetente Ansprechpartner bereitzustellen. Im Falle betroffener Landwirte wird in der Regel eine intensive einzelbetriebliche Beratung durchzuführen sein.

Darüber hinaus sollen Hilfen bei der Bewältigung neuer Situationen angeboten werden, z.B. indem auch die Verbraucher durch gezielte Vermarktungsstrategien einbezogen werden.

4.1.3 Planungsablauf und Koordination

Regionale und lokale Arbeitskreise

Obwohl sich in der Landschaftsplanung bereits eine eindeutige Tendenz von der Experten- zur Dialogplanung abzeichnet, bleiben kommunikative Planungstechniken zur Beteiligung und Bündelung der Interessen aller lokalen Akteure in Beiräten, Arbeitskreisen oder an Runden Tischen bisher meist dem persönlichen Engagement einzelner Planer oder besonders motivierter Verwaltungsmitglieder überlassen. Sie sollen jedoch künftig fester Bestandteil von umsetzungsorientierten Gewässerentwicklungskonzepten sein und möglichst frühzeitig eingesetzt werden.

Das nachfolgend vorgestellte Modell wurde unter Einbeziehung mehrerer Experten, die teilweise an Fallstudien mitwirkten, auf der Basis "Kommunikation in der Landschaftsplanung" für die Erstellung umsetzungsorientierter Konzepte zur Entwicklung kleiner Fließgewässer und deren Einzugsgebiete entwickelt. Es geht davon aus, daß künftig zusätzlich zur Gesamtbetrachtung aller Umweltkriterien auch die Nutzerinteressen bereits ab Projektbeginn integriert werden. Ganz pragmatisch gesehen, liegt der Vorteil in diesem Ansatz darin, daß vor Ort vorhandene, Kompetenz und Energie produktiv am Prozeß beteiligt wird. Es ersetzt zwar die in den gesetzlichen Bestimmungen zu den jeweiligen Planfeststellungsverfahren (vgl. Kap. 4.3) vorgesehenen Anhörungen und Einwendungsregelungen nicht, kann aber entscheidend zu deren Verkürzung und Vereinfachung beitragen.

Getragen wird dieses Modell von der Vorstellung, daß ein einzugsgebietsbezogener Arbeitskreis das gesamte Vorhaben begleitet und dabei von mehreren örtlichen oder themenbezogenen Arbeits- und Fachgruppen unterstützt wird.

Projektbeginn und Information der Öffentlichkeit (1 -2)

Grundsätzlich ist es wünschenswert, daß Initiativen zur Erarbeitung von Konzepten für die Entwicklung von Fließgewässern einschließlich einer umweltschonenden Landnutzung im Einzugsgebiet von den betroffenen Kommunen, Gewässerunterhaltungsverbänden oder sonstigen Einrichtungen ausgehen. Häufig werden solche Planungen jedoch von übergeordneten Behörden angestoßen. In diesen Fällen sind Akzeptanzuntersuchungen für die spätere Umsetzbarkeit um so wichtiger.

In anfangs noch relativ kleinem Kreise soll das Projekt und sein Ablauf vorbereitet und strukturiert werden. Vertreter der Kommunen, zuständiger Ämter und Ressorts einigen sich auf einen "Projektmanager" und bestimmen problembezogen die zu beteiligende Projektgruppe. Die Vertreter sorgen für eine frühzeitige Information der Bürger über das Projekt (1), die kontinuierlich durch Versammlungen, Vorträge, Exkursionen und Begehungen fortgeführt wird (2).

Grundlagenermittlung und Umsetzung einfacher Maßnahmen (3)

Danach kann wie üblich die nun vor Ort bereits öffentlich vorgestellte Projektgruppe aus Fachleuten (Ingenieuren, Biologen, Landschaftsplanern u.a.) mit der Grundlagenermittlung beginnen. Besonders motivierend für alle Beteiligten ist die frühzeitige Umsetzung einfacher Maßnahmen, über die von Anfang an Konsens besteht.

Zum Beispiel kann die Öffnung einer gefaßten Quelle ganz, am Anfang eines Projektes ein symbolträchtiges und richtungsweisendes Signal für den weiteren Prozeß sein. Schon während der Grundlagenermittlung sollten immer wieder leicht umsetzbare und gut nachvollziehbare Maßnahmen verwirklicht werden, um das Projektwissen und die Motivation bei Beteiligten und Bevölkerung zu fördern.

Bestandsaufnahme mit Akzeptanzuntersuchung (4)

Neben Erhebungen der naturwissenschaftlichen Grundlagen (vgl. Kap. 2) werden durch Expertengespräche mit Vertretern verschiedener Interessengruppen im Einzugsgebiet auch Daten über akzeptanzhemmende oder -fördernde Kriterien gesammelt. Hierzu werden Fragen nach den projektbezogenen Bestimmungsgrößen lokaler Akzeptanz und Umsetzbarkeit gestellt. Unabhängig von Bürgermeinung und vielfältigen Nutzungsansprüchen machen sich die Fachleute ein Bild des untersuchten Einzugsgebietes. In ihre Analysen können jedoch themenspezifisch bereits sozio-ökonomische Gesichtspunkte einfließen, die in Expertenbefragungen gewonnen wurden. Durch die frühe Information der Bevölkerung sind die datensammelnden Experten keine Unbekannten mehr. Sie werden mit Vertrauen und Offenheit begleitet und können vor Ort vorhandenes Umweltwissen nutzen. Erste örtliche Arbeits- und Fachgruppen zu besonders wichtigen Themen haben bereits ihre Arbeit aufgenommen. Schon während der Bestandsaufnahme finden Begehungen, Vorträge oder Führungen für örtliche Entscheidungsträger, Arbeitskreise und interessierte Bürger statt, gesammeltes Umweltwissen wird verständlich weitergegeben.

Leitbild und Entwicklungsziele (5)

Auf der Grundlage des erarbeiteten Leitbildes (vgl. Kap. 2.3) schälen sich als wichtige Ergebnisse aus den regelmäßigen Sitzungen des Arbeitskreises allmählich Ansätze für Entwicklungsziele (vgl. Kap. 2.4) heraus. Sie beziehen sich auf Gewässer, Aue sowie Einzugsgebiet und bedürfen einer intensiven Abstimmung am Runden Tisch.

Abstimmung und Interessenausgleich am Runden Tisch (6)

Mit zunehmender Konkretisierung der Vorstellungen, spätestens anläßlich der Vorstellung von Vorschlägen für Teilziele der Entwicklung (vgl. Kap. 2.4.2), vergrößert sich der Koordinierungsaufwand. Der regionale Arbeitskreis hat mehr Mitglieder bekommen, die als Gesandte der örtlichen Kreise oder als wichtige Interessenvertreter mit am Runden Tisch sitzen. Erfahrungen aus der Praxis zeigen, daß in einem übergeordneten Arbeitskreis Ergebnisse aus bis zu 60 Arbeitsgruppen in mehreren Gemeinden zusammenlaufen können, in denen über 500 Bürger tätig sind, um an der Entwicklung ihrer Region mitzuarbeiten. Hier werden örtliche Interessen auf regionaler Ebene vertreten und umgekehrt die örtlichen Auswirkungen regionaler Entwicklungsstrategien vermittelt. Trotz einer mittlerweile erheblich angewachsenen Zahl aktiv am Entwicklungsprozeß Beteiligter kann der Arbeitskreis einen Interessenabgleich moderieren und ein gemeinsames Entwicklungsziel für das gesamte Einzugsgebiet formulieren.

Dank des vorherigen, kommunikativen Prozesses handelt es sich zwar um weitgehend konsensfähige Ziele - dennoch ist es Aufgabe des Runden Tisches, auftretende Konflikte offen anzusprechen und deren Ursachen aufzudecken sowie Lösungen zu finden. Gleichzei-

tig sind manchmal ungeklärte Zuständigkeiten bewußt zu machen, um mit ersten gezielten Umsetzungsschritten beginnen zu können.

Erste Umsetzungsschritte und Information der Öffentlichkeit (7)

Die Umsetzung einfacher Maßnahmen (4) Während der Bestandsaufnahme war eher als Werbung für die gemeinsame Idee zu verstehen. In dieser Projektphase (erfahrungsgemäß nach etwa 1 - 2 Jahren) ergeben sich dagegen erste Umsetzungsschritte auf der Basis der abgestimmten Entwicklungsziele. Um gezielte Maßnahmen zur ökologischen Gewässerentwicklung einleiten zu können, muß jedoch noch weitere Informations- und Bildungsarbeit geleistet werden. Um beispielsweise Strukturverbesserungen an einem Gewässerufer durchzuführen, sind zahlreich Anlieger zu informieren und ggf. deren Grundstücke zu erwerben.

Geht es bereits um erste Maßnahmen zur Entwicklung ganzer Auen, muß Landwirten geholfen werden, ihre Probleme in einzelbetrieblichen Beratungen zu erörtern und u.U. die Umstrukturierung einzelner Betriebe zu ermöglichen.

Entwicklungskonzept für Gewässer, Aue und Einzugsgebiet (8)

Anstatt gleich nach der Bestandsaufnahme und Bewertung mit einem fertigen Entwurf aufzuwarten, kann im Rahmen des kommunikativen Planungsprozesses frühestens jetzt trotz des Anspruchs auf laufende Fortschreibung - von einem fertigen Entwicklungskonzept gesprochen werden. Im Zuge der Öffentlichkeitsarbeit wird es nun allgemein bekanntgemacht. Es wird für die Entwicklungsziele geworben. Bei den üblichen Planungsprozessen muß zum Zeitpunkt der Öffentlichkeitsbeteiligung oft mit zeitraubenden Einsprüchen gerechnet werden. Im gegenseitigem Abstimmungprozeß überwiegen im Idealfall hingegen Motivation und Konsens. Sie wurden durch umweltkompetente Gesprächspartner aufgebaut, die auf erste Umsetzungserfolge zurückblicken können.

Diese Voraussetzungen sind besonders für ganzheitliche Entwicklungskonzepte von Fließgewässern bedeutsam, da den für die Gewässer zuständigen Behörden eigene Kompetenz und Befugnis zur Umsetzung umfassend formulierter Entwicklungsziele nur für Teilbereiche zukommen. Je weiter sie sich vom Gewässer über die Aue in die Fläche des Einzugsgebietes hinausbegeben, um so eher berühren sie den Zuständigkeitsbereich anderer überlagernder Planungsebenen oder die kommunale Planungshoheit.

Hinzu kommt, daß mit zunehmendem Anspruch auf flächendeckende Umsetzung im Einzugsgebiet letztlich das Umweltverhalten aller darin lebenden und arbeitenden Menschen angesprochen ist. Die Amplitude möglicher Änderungen des Umweltverhaltens reicht demnach vom freiwilligen Anpflanzen einiger Bäume über die Einführung extensiverer Bewirtschaftungsformen bis hin, zu einem bewußteren Umgang mit Ressourcen und Verbrauchsmitteln in den einzelnen Haushalten (vgl. Kap 4.4).

Die Überschneidungen erfordern - positiv gesehen - unbedingte Abstimmung und Integration. Die geforderte Kommunikation im Planungsprozeß kann sich daher nicht auf die reine Bürgerbeteiligung beschränken, sondern muß die Einbeziehung anderer Ressorts, wie z.B. Naturschutz, Land- und Forstwirtschaft, Raumordnung und Landesplanung sowie sonstige fachliche, regionale und gemeindliche Planungen zum Ziel haben. Hier liegen die

rechtlich verbindlichen Instrumente, mit denen die erforderlichen Umweltbelange umgesetzt werden können (vgl. Kap. 4.3). Nur wenn das Denken in Einzugsgebieten auch auf Gemeindeebene zur Regel wird, lassen sich langfristig effektive Wege der Gewässerentwicklung durchsetzen.

Umsetzungskoordination, Erfolgskontrolle und Fortschreibung (9)

Mit Projektfortschritt steigt der Koordinationsaufwand. Hier wird der anfangs eingesetzte Projektmanager als Vorstand des Arbeitskreises kaum mehr in der Lage sein, alle Aktivitäten zu koordinieren. Da außerdem die umgesetzten Maßnahmen auf ihre Plausibilität zu überprüfen sind, um dem nach wie vor tätigen Runden Tisch Vorschläge zur Fortschreibung des Entwicklungsprogrammes zu machen, wird die Einrichtung eines Projektbüros empfohlen. Getragen von den zuständigen Institutionen im Einzugsgebiet sollten hier alle Handlungsstränge von Informationsveranstaltungen bis zu konkreten Maßnahmen zusammenlaufen und abgestimmt werden. Gleichzeitig finden betroffene Bürger auch außerhalb der Sitzungen des Arbeitskreises kompetente Ansprechpartner. Die Frage, wo diese Einrichtung zur Projektsteuerung anzusiedeln ist, kann je nach den Gegebenheiten in den Ländern unterschiedlich gehandhabt werden: Gemeinden, Verbände, Ämter oder freie Büros können gleichermaßen eingesetzt werden.

Weitergehende Umsetzung in Fachplanung und kommunaler Planung (10)

Je weiter sich umzusetzende Maßnahmen vom Gewässer entfernen und in die Fläche gehen, um so mehr sind die Projekte auf die Integration ihrer Vorstellungen in Fachplanungen und Planungen der Gemeinden im Einzugsgebiet angewiesen (vgl. Kap. 4.3). Je nach dem Stand der Landschaftsplanung in den Gemeinden, findet nun die Verzahnung beispielsweise mit gemeinsamen Zielen für gewässerschonende Landnutzung statt. Forderungen aus den Projekten nach erhöhter Wasserrückhaltung in den Siedlungsgebieten müssen, durch Bebauungspläne bzw. Grünordnungspläne umgesetzt werden (Bild 75).

4.2.4 Kostenermittlung und -bewertung

Vergleichende Kostenbetrachtungen sind eine entscheidende Grundlage zur Bewertung möglicher Entwicklungsalternativen. Am einfachsten kalkulierbar sind Herstellungskosten von Bauwerken (incl. Erdbau, Pflanzungen usw.). Bereits bei Grunderwerb, Pacht, Ausgleichszahlungen etc. stellen sich Unwägbarkeiten ein. Beim derzeitigen Stand der Kenntnisse sind ökologische Gewinn- und Verlustbilanzen nicht möglich. Die Quantifizierung der ökologischen Funktionen mit monetären Größen ist nach wie vor umstritten.

Obwohl es also nicht direkt möglich. ist, ökologische Verbesserungen in ökonomische Werte zu übertragen, kommt es darauf an, die vorhandenen Mittel möglichst effektiv zu nutzen. Unter diesem Gesichtspunkt können Kostenermittlungen entscheidende Aussagen liefern und zu einem entscheidenden Instrument der Umsetzung werden.

Tabelle 17: Wirtschaftsgebiete und repräsentative Regionshöfe als Basis einer Kostenermittlung (verändert nach BACH u. FREDE, 1994)

			Zuna	hme der u	ngünst	tigen Stand	orteige	nschaften		
				Abna	hme de	er Ertragsfä	higkeit			
Wirtschaftsgebiet	1	2	3	4	5	6	7	8	9	10
Flächenanteil im EZG der Lahn (%)		2,6		6,1		26,2		4,9	48,1	12,1
Summe der Flächen mit ungünstigen bis sehr ungünstigen Standorteigenschaften (%)									65,1	
Summe der Flächen mit günstigen Standort- eigenschaften (%)			8,7							n V
Anteil der "benachtei- ligten Gebiete" inner- halb der Wirtschafts- gebiete (%)									89	100
repräsentative "Regions	shöfe"								-	
Betriebstyp		MF		MF		FB		MF	FB	FB
Haupterwerbsbetriebe										
Fläche (ha)		65		65		65		50	38	65
Anteil Ackerland (%)		91		74		66		73	61	42
Anteil Grünland (%)		9		26		34		27	39	58
Viehhaltung (GVE/ha)		0,25		0,68		0,64		0,99	1,2	1,05
Fixkosten 1991/1992 DM		39.208		42.100		40,232		36,960	32,500	42,521
Nebenerwerbsbetriebe										
Fläche (ha)		20		20		20		20	20	20
Anteil Ackerland (%)		91		74		66		73	61	42
Anteil Grünland (%)		9		26		34		27	39	58
Viehhaltung (GVE/ha)		0,42		0,32		1,05		0,5	0,5	0,95
Fixkosten 1991/1992 DM		18,208		15,600		21,411		16,470	18,117	22,188

Für die Konstruktion von Regionshöfen wurden charakteristische Betriebsgrößen und Fruchtfolgen aus den Flächennutzungserhebungen der Gemeindestatistiken für die jeweiligen Wirtschaftsgebiete und typische Viehbestände aus der Agrarstatistik ermittelt. MF =Marktfruchtbetrieb, FB = Futterbaubetrieb

Beispielsweise können Stickstofffrachten im Gewässer durch Maßnahmen der Landwirtschaft (Reduzierung des Stickstoffverbrauchs), durch Maßnahmen der Regenwasserbehandlung im Siedlungsbereich (Reduzierung kritischer Regenüberlaufereignisse) und durch Maßnahmen im Kläranlagenbau (zusätzliche Stickstoff-Elimination) verringert werden. Da für jede dieser Möglichkeiten die Grundlagen für eine Kostenermittlung gegeben sind, lassen

sich die Kosten zur Erreichung einer definierten Zielgröße (z.B. kg N/a) vergleichend gegenüberstellen. Auf diese Weise kann sich beispielsweise ergeben, daß bei Einsatz desselben Kostenvolumens Änderungen der landwirtschaftlichen Praxis effektiver sind als die Aufrüstung von Kläranlagen. Aussagen dieser Art sind wegen ihrer sanierungsstrategischen Bedeutung und wegen ihrer gesellschaftspolitischen Überzeugungskraft entscheidende Punkte im Entscheidungsprozeß des Planungsablaufes.

Möglichkeiten der Kostenermittlung für Entwicklungsmaßnahmen im Einzugsgebiet

Für die Aufstellung und Bewertung von Kosten ökologischer Entwicklungsmaßnahmen in der Landwirtschaft ist eine einzelbetriebliche Betrachtung unumgänglich. Für eine Übersicht können allerdings auch regionalisierte Verallgemeinerungen nützlich sein, wenn sie sich auf repräsentative Angaben stützen, die wesentlichen Unterschiede der Bewirtschaftungsformen herausstellen und damit zugleich Aussagen über die Handlungsmöglichkeiten der Einzelbetriebe zulassen.

Tabelle 18: Grundlagen für die Kostenermittlung von Sanierungsmaßnahmen in der Land wirtschaft (verändert nach REGIERUNGSPRÄSIDIUM GIEßEN, 1994)

Ziel	Maßnahme	Berechnungsgrundlage
Akzeptanz	Information und Beratung	Beraterkosten für Veranstaltungen, Einzelberatungen etc. nach üblichen Honoraren und Abschätzung der Zahl nötiger Termine
		Kalkulation von Kosten der "offenen Pla- nung" (Projektmanager, Projektgruppe, Runder Tisch etc.) z.Z. nicht möglich
Flächenumwandlung	langfristige Flächenstillegung	Deckungsbeitrag der verdrängten Fruchtfolge
	Umwandlung von Acker in Grünland	bei langfristigen Stillegungen (z.B. 20 Jahre) steigt die einzelbetiebliche Rentabilität aufgrund von Anpassungsmaßnahmen (z.B. Ausgleichszahlungen), die zu einer Senkung der Fixkosten führen
Optimierung der Wirt-	Optimierung des Ausbringungszeit-	Baukosten für die Vergrößerung der Kapa-
schaftsdüngung	punktes durch Erweiterung der Lager- kapazität für Wirtschaftsdünger	zität von Güllelagern Lagerkapazität muß mindestens auf 6 Monate angelegt sein
	Verbesserung der Ausbringungsge- nauigkeit durch Verbesserung der Ausbringungstechnik, z.B.	spezifische Kosten der unterschiedlichen Ausbringungsverfahren, variable und fixe Kosten für Tankwagen und Verteileinrich- tung
	Ersatz von Schleudertankwagen mit Prallteller durch	lung
	 Kompressortankwagen mit Pendeldüsenverteiler, 	
	Pumptankwagen mit Schlepp- schlauchverteiler	

	Reduzierung der Kosten durch über- betriebliche Gülleausbringung	Kostendifferenz zwischen Eigenmechanisierung und Maschinenring auf der Basis der eingesetzten Technik und ihrer spezifischen Jahresausbringungsleistung Die Jahresausbringungsleistung eines Schleppschlauchverteilers kann mit 15.000 m³ angesetzt werden
	Reduzierung der Kosten durch über- betriebliche Güllenutzung	auf der Basis von Kosten und Leistungen des Gülle-abgebenden und des aufneh- menden Betriebs nur für den konkreten Einzelfall möglich
Verminderung der N- und P- Düngung	Absenkung der N-Düngungshöhe	Schätzung des Ertragsrückganges für einzelne Fruchtarten, z.B. mit Hilfe der "Normierten kurzfristige Relativ-Ertragsfunktion" (KRAYL 1993)
	Veränderungen der Preis- /Kostenrelationen für Kulturarten der EU-Marktordnung, z.B.: Absenkung der EU-Agrarpreise	Berechnung der Ausgleichsleistungen für Düngungsbeschränkungen, z.B. nach NEUHAUS u. BAUER, 1993 meßbare Effekte nach Maßgabe der einzel- betrieblichen Anpassungsreaktionen
Optimierung des PSM- Einsatzes	Überbetriebliche Erledigung des Pflanzenschutzes durch besonders ausgebildete Fachkraft	Vergleich der Kosten zwischen Maschinen- ring und Eigenmechanisierung
Verminderung der Erosion	konservierende Bodenbearbeitung und Direktsaat	Vergleich des Arbeitszeitbedarfs zwischen konventioneller Pflugbearbeitung und Di- rektsaat und Abgleich mit Ausgaben für PSM-Behandlung
	Erosionsschutzstreifen im Hack- fruchtanbau	Berechnung der Ernteverluste für einzelne Fruchtsorten in Abhängigkeit von der Flä- cheninanspruchnahme der Schutzstreifen
	Bodenbearbeitung in Konturrichtung	auf der Basis von Verfahrens- und Ausfüh- rungskosten der Flurneuordnung, Landes- zuschüssen und Darlehen

Diese Herangehensweise wurde auch im Lahn-Projekt gewählt (BACH u. FREDE 1994). Hier wird die Kostenermittlung auf der Basis von konstruierten "Regionshöfen" vorgenommen, die bestimmte Wirtschaftsgebiete repräsentieren (Tab. 17). Diese Wirtschaftsgebiete bzw. Vergleichsflächen teilen die Landesfläche von Hessen in zehn Regionen, die sich hinsichtlich ihrer Standorteigenschaften und ihrer Ertragsfähigkeit unterscheiden.

Die Zuordnung der "Regionshöfe" zu den Wirtschaftsgebieten und ihre vergleichende Gegenüberstellung zeigt, wie groß die Unterschiede der Bewirtschaftungsformen innerhalb eines Einzugsgebietes sein können. Daraus folgt, daß eine Übertragung von Kostenschätzungen auf andere Einzugsgebiete oder die Angabe von Pauschalen nicht möglich ist.

In Tab. 18 sind beispielhaft einige wesentliche Möglichkeiten zusammengestellt, wie Kostenermittlungen angesetzt werden können. Die aus dem Planungsverlauf resultierenden Entwicklungsziele können meistens mit mehreren einzelnen Maßnahmen (vgl. Kap. 4.2.1) oder durch eine Kombination von Maßnahmen erreicht werden.

Jede dieser Maßnahmen hat spezifische, kalkulierbare Kosten, die sich mit Hilfe vorhandener Informationen beziffern lassen. Zuverlässige Berechnungsgrundlagen sind investive Kosten, z.B. Baukosten und Anschaffungskosten oder fortlaufende Kosten, z.B. Unterhaltungs- und Personalkosten.

Tabelle 19: Grundlagen für die Abschätzung der Gesamtkosten für die Lahn-Sanierung im Dynamikraum (BLANK, 1994)

	Gesamtsanierungsszenarien				
Szenario 1	Szenario 2	Szenario 3			
im fortgeschriebenen lst-Zustand fallen keine zusätzlichen Kosten an. Alle Maß- nahmen, die bereits jetzt festgelegt oder geplant sind, sind ent- sprechend in den Haushalten abge- sichert.	Außerhalb der Siedlungen erfolgt Grund- erwerb von ca. 15% der Fläche des po- tentiellen Dynamikraumes	Vollständiger Grunderwerb im Dyna- mikraum			
	Sicherung und Entwicklung von Auenle- bensgemeinschaften auf ca. 10% des Dynamikraumes	Sicherung, Entwicklung und Vernetzung von Auenlebensgemeinschaften			
	Ca. 5% der Fläche des Dynamikraumes werden zur Ufergestaltung und zur Anlage von Gewässerrandstreifen benötigt	Außerhalb von Siedlungsbereichen: Initiie- rung der Fließgewässerdynamik durch Störstellen, freie Dynamik bzw. moderierte Dynamik			
	Durchgehend naturnaher Ausbau der Lahn erfolgt mit statischen Ersatzstruktu- ren oder moderierter Dynamik unter Ver- wendung möglichst Ingenieurbiologischer Methoden (auch In Siedlungsbereichen)	Innerhalb von Siedlungsbereichen: Schaf- fung von statischen Ersatzstrukturen durch naturnahen Ausbau			
		Objektschutz für Siedlungen und Brücken			

Die Effektivität der vorgeschlagenen Maßnahmen im Sinne der Entwicklungsziele muß wiederum anhand der betriebswirtschaftlichen Möglichkeiten des Einzelbetriebes in der spezifischen regionalen Situation überprüft werden. Im Lahn-Projekt ergibt diese Überprüfung zum Beispiel, daß durch eine bedarfsangepaßte Verminderung der Stickstoffdüngung sowie durch eine Erhöhung der Lagerkapazität für wirtschaftseigene Flüssigdünger der Stickstoffaustrag deutlich verringert werden kann.

Möglichkeiten der Kostenermittlung für Entwicklungsmaßnahmen in Aue und Gewässer

Da die Auen der meisten Gewässer landwirtschaftlich genutzt werden, können auch hier die im Einzugsgebiet anwendbaren Kostenansätze (s.o.) zu greifbaren Aussagen führen. Allerdings gelten für Auen höhere und z.T. andere ökologische Anforderungen, die sich letztlich aus der Abflußdynamik des Gewässers herleiten (vgl. Kap. 3.2) und in vielen Fällen zur Aufgabe, von Nutzungen führen. Die wesentlichen Berechnungsgrundlagen sind daher die Kosten für Grunderwerb oder langfristige Anpachtung. Je nach den definierten Entwicklungszielen, können zusätzlich die Kosten für Pflanzgut (z.B. für die Neuanlage eines Auwaldes) oder für landschaftspflegerische Maßnahmen (z.B. Pflegemaßnahmen von Hecken, Feldgehölzen, Röhricht) hinzukommen. Kosten für Maßnahmen dieser Art liegen in der Regel um Größenordnungen niedriger als die Kosten für Grunderwerb oder Anpachtung und können deshalb für überschlägige Kalkulationen vernachlässigt werden. Können Nutzungsänderungen über Ausgleichszahlungen bestehender Länderprogramme finanziert werden, sollen die jeweils längsten Zeiträume, in der Regel 20 Jahre, als Berechnungsgrundlage herangezogen werden.

Weiterreichende Maßnahmen, insbesondere im Zusammenhang mit der Erweiterung der Retentionsflächen für den Hochwasserschutz basieren neben dem Grunderwerb auf kalkulierbaren Kosten u.a. für die Verlegung von Deichen. Die Grundlagen hierfür sind im wesentlichen Bau- und Unterhaltungskosten.

Die Finanzierbarkeit von Maßnahmen in den Auen wirkt sich unmittelbar auf die Möglichkeiten der Entwicklung des Gewässers aus. Eine Annäherung der Stoff-, Abfluß- und Morphodynamik des Gewässers an naturnahe Verhältnisse ist direkt von der Verfügbarkeit der angrenzenden Flächen abhängig.

Im engeren Sinne läßt sich die Kostenermittlung für Maßnahmen im Gewässer auf der Grundlage von investiven Kosten vornehmen. In der Regel werden die Baukosten für die Beseitigung oder den Umbau von Wehren sowie bauliche Veränderungen des Gewässerverlaufes und -querprofils größenordnungsmäßig alle anderen Kosten übertreffen.

Im Hinblick auf die begrenzten finanziellen Mittel - aber auch aus ökologischen Gründen - werden Maßnahmen der Gewässerentwicklung in den meisten Fällen das Mittel der Wahl sein (vgl. Kap. 3.3.1) und bauliche Änderungen größeren Umfangs eher die Ausnahme bleiben. Kostenermittlung für Maßnahmen dieser Art basieren auf Angaben über Kosten, die zur Aufrechterhaltung des Ist-Zustandes nötig wären und nun eingespart werden können. Es handelt sich dabei meist um die spezifischen Kosten der Gewässerunterhaltung, d.h. Personalkosten und laufende Kosten für Maschinen und Geräte. Inwieweit diese Kosten für die Entwicklung von Gewässern zu Buche schlagen können, ist wiederum eine Funktion der angrenzenden, bewirtschafteten Flächen, bzw. der geschätzten Kosten für Grunderwerb und Pachtzahlungen.

An diesem Beispiel läßt sich zeigen, daß eine einfache Bilanzierung oder Aufrechnung von Gewinnen und Verlusten aussagelos bleibt, wenn sie nicht an ökologische Zielvorgaben gekoppelt und im Zusammenhang mit den Kosten anderer Maßnahmen bewertet wird. Als

Beispiel hierfür kann die Gesamtkostenermittlung der Lahn-Sanierung für den Fluß und seine Aue ("Dynamikraum") herangezogen werden.

Auf der Grundlage von fachspezifischen Einzelszenarien (vgl. Kap 4.2.2) werden "Gesamtsanierungsszenarien" aufgestellt, in denen die wesentlichen Grundlagen bzw. ökologischen Vorgaben für die Kostenermittlung aufgeführt sind. Die Kostenermittlung selbst beruht auf ausschließlich investiven Kosten, z.B. Grunderwerb, bauliche Maßnahmen oder Pflanzmaßnahmen mit entsprechender Inititalpflege im Dynamikraum. Ziel dieser Vorgehensweise ist, überschlägige Kosten für eine Prioritätensetzung zu ermitteln und den Spielraum für unterschiedliche Annäherungsgrade an das Leitbild auszuloten. Die Tabelle 19 zeigt die Definitionen der drei Gesamtszenarien, wobei das Szenario 1 als Nullösung und das Szenario 3 als maximale Annäherung an das Leitbild bezeichnet werden kann.

Aufgrund von überschlägigen Kostenermittlungen können Richtungsentscheidungen dahingehend gefällt werden, daß

- die Entwicklungsziele des Szenarios 3 langfristig mit geringem Aufwand angestrebt werden,
- die zur Verfügung stehenden Mittel langfristig in Maßnahmen investiert werden, die die Eigendynamik des Flusses unterstützen (z.B. Grunderwerb, Objektschutz),
- die Herstellung der Durchgängigkeit zu gewährleisten ist.

Diese Aussagen bedürfen im konkreten Sanierungsfall der genauen Überprüfung und müssen nach Maßgabe der vor Ort vorliegenden Problemlage modifiziert werden.

Literatur

- Bach, M. Frede, H.-G. (1994): Flächennutzung und Siedlungsgeographie. In Regierungspräsidium Giessen (Hrsg.)
- Blank, (1994): Übersicht über die Sanierungskosten im Dynamikraum. In Regierungspräsidium Giessen (Hrsg.)
- DVWK (Deeutscher Verband für Wasserwirtschaft und Kulturbau e.V.) (1996): Fluß und Landschaft ökologische Entwicklungskonzepte. DVWK-Fachausschuß "Ökologisch begründete Sanierung kleiner Fließgewässer", DVWK-Merkblätter zur Wasserwirtschaft, Heft 240, Bonn
- Kaule, G., Endruweit, G., Luz, F., Oppermann, B. und G. Weinschenck (1994): Landschaftsplanung umsetzungsorientiert - Schlußbericht zum Erprobungs- und Entwicklungsvorhaben "Ausrichtung von Extensivierungs-, Flächenstellungs- und sonstigen agrarischen Maßnahmen auf Ziele des Natur- und Umweltschutzes mittels der Landschaftsplanung. Münster-Hiltrup
- Luz, F. (1993): zur Akzeptanz landschaftplanerischer Projekte. Determinanten lokaler Akzeptanz und Umsetzbarkeit landwirtschaftlicher Projekte zur Extensivierung, Biotopvernetzung und sonstiger Maßnahmen des Natur- und Umweltschutzes. Frankfurt/M.
- Regierungspräsidium Giessen (Hrsg.) (1994): Die Lahn, ein Fließgewässerökosystem. Modellhafte Erarbeitung eines ökologisch begründeten Sanierungskonzeptes für kleine Fließgewässer am Beispiel der Lahn. Abschlußbericht. Giessen

Programm des Fachgesprächs: Umwelt-/Sozio-Ökonomie im Forschungsprogramm Elbe-Ökologie

Donnerstag, 21. November 1996

13.00-13.10 Uhr Prof. u. Dir. V. Wetzel (Bundesanstalt für Gewässerkunde): Begrüßung13.10-13.30 Uhr Dr. D. Bornhöft (Projektgruppe Elbe-Ökologie in der Bfg): Einleitung und Ziele des Fachgesprächs

13.30-15.30 Uhr

Themenblock I: Methoden zur umwelt-ökonomischen Bewertung

Prof. Dr. U. Hampicke (Univ. Greifswald, Lehrstuhl f. Landschaftsökonomie): Möglichkeiten und Grenzen der monetären Bewertung der Natur

Dr. P. Elsasser (Bundesforschungsanstalt f. Forst- und Holzwirtschaft, Hamburg): Die Contingent Valuation Method: Stand der Forschung, Anwendungsmöglichkeiten im Rahmen der Elbe-Ökologie und Grenzen der Methodik

15.30-16.00 Uhr

Pause

16.00-19.00 Uhr

Themenblock II: Umwelt-ökonomische Instrumentarien

Dipl.-Volksw. P. Rieken (Planco Consulting, Essen): Die Berücksichtigung von Umweltwirkungen im Rahmen gesamtwirtschaftlicher Bewertungsrechnungen für verkehrliche Investitionsvorhaben an Binnenwasserstraßen

Dipl.-Volksw. J. Meyerhoff (Inst. f. ökologische Wirtschaftsforschung, Berlin): Die ökonomische Bewertung von Feuchtgebieten - ein Überblick über bisherige Untersuchungen

Dr. M. Kosz (TU Wien, Inst. f. Finanzwissenschaften und Infrastrukturpolitik): Kosten-Nutzen-Analysen am Beispiel des Nationalparks Donau

Freitag, 22. November 1996

08.45-10.30 Uhr

Fortsetzung Themenblock II:

Prof. Dr. M. F. Hofreither (Univ. f. Bodenkultur Wien, Inst. f. Wirtschaft, Politik und Recht): Landnutzungszertifikate als Instrument im Grundwasserschutz?

Prof. Dr. K. Jaster (Humboldt Univ. Berlin, Inst. f. landwirtschaftl. Betriebslehre): Betriebsoptimierungsmodell zur ökonomischen Beurteilung umweltgerechter, nachhaltiger Landbewirtschaftung

10.30-11.00 Uhr

Pause

11.00-14.00 Uhr

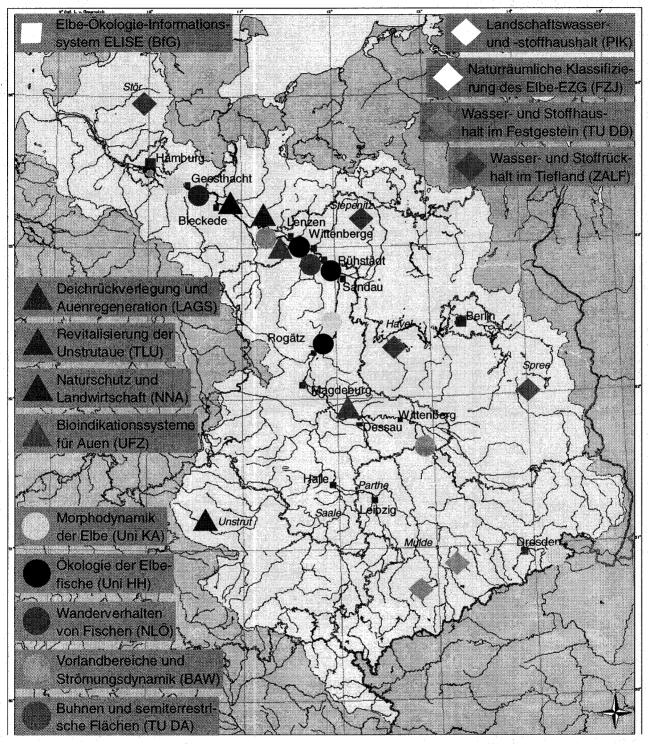
Themenblock III: Beispiele aus dem Elbe-Ökologie-Programm und Abschlußdiskussion

Prof. Dr. G. Breitschuh (Thüringer Landesanstalt f. Landwirtschaft, Jena): Effiziente und umweltverträgliche Landnutzung (EULANU) im Rahmen der "Revitalisierung der Unstrutaue"

Dipl.-Oec. K. Tampe (Büro f. Ökonomie, Naturschutz und Landwirtschaft, Reutlingen): Kosten-Nutzen-Analysen im Rahmen des Projekts "Revitalisierung der Unstrutaue"

Dr. P. Zube, Dr. G. Neubert (Lehr- und Versuchsanstalt für Grünland und Futterwirtschaft, Paulinenaue): Sozio-ökonomische Betroffenheit der Landwirtschaft durch Deichrückverlegungen im Bereich der brandenburgischen Mittelelbe (Lenzen)

Dipl.-Volksw. U. Petschow (Inst. f. ökologische Wirtschaftsforschung, Berlin): Sozio-ökonomische Auswirkungen bei Retentionsflächenrückgewinnung und Altauenreaktivierung an der Mittelelbe (Bereiche Sandau und Rogätz)


14.00 Uhr

Ende des Fachgesprächs

Ökologische Forschung in der Stromlandschaft Elbe (Elbe-Ökologie)

- Überblick über die bewilligten Vorhaben -

Das Einzugsgebiet der Elbe - Deutscher Teil -

Kartengrundlage: BfG, FZJ

Autorenverzeichnis

- Dr. Dirk Bornhöft, Projektgruppe Elbe-Ökologie, Schnellerstr. 140, 12439 Berlin
- Prof.Dr. Gerd Breitschuh, Thüringer Landesanstalt für Landwirtschaft (TLL), Abt.
 Agrarmanagement und Ökologie, Naumburger Str. 108, 07742 Jena-Zwätzen
- Dr. Hans Eckert, Thüringer Landesanstalt für Landwirtschaft (TLL), Abt. Agrarmanagement und Ökologie, Naumburger Str. 108, 07742 Jena-Zwätzen
- Prof.Dr. Ulrich Hampicke, Universität Greifswald, Lehrstuhl für Landschaftsökonomie,
 Grimmerstr. 88, 17487 Greifswald
- Prof.Dr. Karl Jaster, Humboldt-Universität zu Berlin, Institut für landwirtschaftliche und gärtnerische Betriebslehre, 10099 Berlin
- Dr. Michael Kosz, Technische Universität Wien, Institut für Finanzwissenschaft und Infrastrukturpolitik, Karlsgasse 11, A – 1040 Wien
- Dr. Gert Neubert, Lehr- und Versuchsanstalt für Grünland und Futterwirtschaft Paulinenaue e.V. (LVGF), Gutshof 7, 14641 Paulinenaue
- Dipl.-Volkswirt Perter Rieken, Planco Consulting GmbH, Lilienstr. 44, 45133 Essen
- Dr. Peter Elsasser, Bundesforschungsanstalt für Forst- und Holzwirtschaft,
 Leuschnerstr. 91, 21031 Hamburg
- Prof.Dr. Markus F. Hofreither, Universität für Bodenkultur Wien, Institut für Wirtschaft,
 Politik und Recht, Gregor-Mendel-Str. 33, A 1180 Wien
- Dipl.-Volkswirt Jürgen Meyerhoff, ab August 1997 TU-Berlin, Institut für Management in der Umweltplanung, Fränklinstr. 28/29, 10587 Berlin
- Dr. Burkhard Schweppe-Kraft, Bundesamt für Naturschutz, Konstantinstr. 110, 53179 Berlin
- Dr. Klaus Tampe, Büro für Ökonomie, Naturschutz und Landwirtschaft (BÖNL), Grüne Au 6, 72766 Reutlingen
- Dr. Peter Zube, Lehr- und Versuchsanstalt für Grünland und Futterwirtschaft Paulinenaue e.V. (LVGF), Gutshof 7, 14641 Paulinenaue

Publikationen des Instituts für ökologische Wirtschaftsforschung

Das IÖW veröffentlicht die Ergebnisse seiner Forschungstätigkeit in einer Schriftenreihe, in Diskussionspapieren sowie in Broschüren und Büchern. Des Weiteren ist das IÖW Mitherausgeber der Fachzeitschrift "Ökologisches Wirtschaften", die allvierteljährlich im oekom-Verlag erscheint, und veröffentlicht den IÖW-Newsletter, der regelmäßig per Email über Neuigkeiten aus dem Institut informiert.

Schriftenreihe/Diskussionspapiere

Seit 1985, als das IÖW mit seiner ersten Schriftenreihe "Auswege aus dem industriellen Wachstumsdilemma" suchte, veröffentlicht das Institut im Eigenverlag seine Forschungstätigkeit in Schriftenreihen. Sie sind direkt beim IÖW zu bestellen und auch online als PDF-Dateien verfügbar. Neben den Schriftenreihen veröffentlicht das IÖW seine Forschungsergebnisse in Diskussionspapieren – 1990 wurde im ersten Papier "Die volkswirtschaftliche Theorie der Firma" diskutiert. Auch die Diskussionspapiere können direkt über das IÖW bezogen werden. Informationen unter www.ioew.de/schriftenreihe diskussionspapiere.

Fachzeitschrift "Ökologisches Wirtschaften"

Ausgabe 2/2010

Das lÖW gibt gemeinsam mit der Vereinigung für ökologische Wirtschaftsforschung (VÖW) das Journal "Ökologisches Wirtschaften" heraus, das in vier Ausgaben pro Jahr im oekom-Verlag erscheint. Das interdisziplinäre Magazin stellt neue Forschungsansätze in Beziehung zu praktischen Erfahrungen aus Politik und Wirtschaft. Im Spannungsfeld von Ökonomie, Ökologie und Gesellschaft stellt die Zeitschrift neue Ideen für ein zukunftsfähiges, nachhaltiges Wirtschaften vor. Zusätzlich bietet "Ökologisches Wirtschaften online" als Open Access Portal Zugang zu allen Fachartikeln seit der Gründung der Zeitschrift 1986. In diesem reichen Wissensfundus können Sie über 1.000 Artikeln durchsuchen und herunterladen. Die Ausgaben der letzten zwei Jahre stehen exklusiv für Abonnent/innen zur Verfügung. Abonnement unter: www.oekom.de.

IÖW-Newsletter

Der lÖW-Newsletter informiert rund vier Mal im Jahr über Neuigkeiten aus dem Institut. Stets über Projektergebnisse und Veröffentlichungen informiert sowie die aktuellen Termine im Blick – Abonnement des Newsletters unter www.ioew.de/service/newsletter.

Weitere Informationen erhalten Sie unter www.ioew.de oder Sie kontaktieren die

IÖW-Geschäftsstelle Berlin Potsdamer Straße 105 10785 Berlin

Telefon: +49 30-884 594-0 Fax: +49 30-882 54 39 Email: *vertrieb(at)ioew.de*

ÖKOLOGISCHE WIRTSCHAFTSFORSCHUNG

GESCHÄFTSTELLE BERLIN

MAIN OFFICE

Potsdamer Straße 105

10785 Berlin

Telefon: +49 - 30 - 884594-0Fax: +49 - 30 - 8825439

BÜRO HEIDELBERG

HEIDELBERG OFFICE

Bergstraße 7

69120 Heidelberg

Telefon: +49 - 6221 - 649 16-0 Fax: +49 - 6221 - 270 60

mailbox@ioew.de www.ioew.de